

Prepared for California Public Utilities Commission

April 25, 2025

TABLE OF CONTENTS

Overview	İ۷
1. Introduction To Analytica	. 1
1.1 Downloads	1
1.2 Introductory Videos	1
1.3 User Guide Excerpts	2
1.3.1 Toolbar Introduction	3
1.3.2 Classes of Variables and Objects	3
1.3.3 Influence Diagrams	5
1.3.4 Input/Output Nodes	6
1.3.5 Numeric Suffixes	6
1.3.6 Attributes of a Variable	7
1.3.7 Attribute Panel	8
1.3.8 Result Viewing Options	9
2. CPUC PG Desktop Model	. 2
2.1 Opening the Model	2
2.2 Changing Key Model Settings and Viewing Results	4
2.2.1 Exercise: Using Measure Filters	
2.2.2 Exercise: Viewing Key Outputs in the GUI	
2.2.3 Exercise: Changing Key Inputs in the GUI	
2.2.4 Exercise: Pivoting and Customizing Result Tables and Graphs	
2.2.5 Exercise: Copying and Pasting Results into Excel	
2.2.6 Exercise: Finding a Variable using its Identifier	
	19
2.3.1 Exercise: Navigating using the Module Hierarchy 2.3.2 Exercise: Navigating using the Model Details	
TABLE OF FIGURES	
Figure 2-1. Initial Pop-up	2
Figure 2-2. Disclaimer and Terms of Use	
Figure 2-3. Graphical User Interface	
Figure 2-4. Measure Filters Module in Top-level GUI	
Figure 2-5. Measure Filters GUI	
Figure 2-6. Set the First Filter Category to Utility	
Figure 2-7. Set the First and Second Filter Elements	
Figure 2-8. Location of Calc Button for Incremental_Market_P in GUI	
Figure 2-9. Verifying Index Elements in Result Window	
Figure 2-10. Accessing Key Outputs in GUI	
Figure 2-11. Accessing Measure-Level Outputs	
Figure 2-12. Location of Calc Button for Economic Potential	
<u> </u>	

Figure 2-13.	Edit Table for Benefit-Cost Threshold	10
Figure 2-14.	Verifying Impact of Changing B/C Ratio	10
Figure 2-15.	Default Graphical View of Incremental_Market_P	12
	Changing Graph Key to Selected Building Types	
Figure 2-17.	Result Graph after Key Change	13
Figure 2-18.	Opening the Graph Setup Dialog Box	13
Figure 2-19.	Customizing Chart Type	14
Figure 2-20.	Graphical View after Changing Chart Type to Stacked Bar Graph	15
Figure 2-21.	Switching from Graphical View to Tabular View	15
Figure 2-22.	Copy Table Function Illustration in Analytica	16
Figure 2-23.	Excel Paste Illustration	16
Figure 2-24.	Pasted Multi-Dimensional Data in Excel	17
Figure 2-25.	Copying a Slice of a Data Table	18
Figure 2-26.	Pasted Data Slice in Excel	18
Figure 2-27.	Searching for an Object Based on its Identifier	19
Figure 2-28.	Diagram Window with Variable Highlighted	19
Figure 2-29.	Show Module Hierarchy Preference Setting	20
Figure 2-30.	Access Building Stock Module Using Module Hierarchy	21
	Example Influence Diagram	
Figure 2-32.	Accessing Model Details	22
	Accessing the Building Stock Module	22

OVERVIEW

Guidehouse and its partners prepared this 2025 Potential and Goals Study for the California Public Utilities Commission (CPUC). The purpose of this study is to develop estimates of energy and demand savings potential in the service territories of California's major investor-owned utilities (IOUs) during the post-2025 energy efficiency (EE) rolling portfolio planning cycle.

A key component of the 2025 Study is the Potential and Goals Model (PG Model), which provides a single platform in which to conduct robust quantitative scenario analysis that reflects the complex interactions among various inputs and policy drivers. The model was built in the Analytica platform.

This document provides helpful material for getting started with Analytica as well as links to more comprehensive Analytica tutorials and user guides. Guidehouse has organized information in the following sections:

- General Analytica Instructions:
 - Downloads: How to download Analytica and reference documents
 - Introductory Videos: Links to videos that provide a good first stop for background on how to use Analytica
 - User Guide Excerpts: Highlights from the comprehensive Analytica users guide for quick reference
 - Useful Shortcut Keys: Table of shortcut keys in Analytica
- CPUC PG Desktop Model: how to use run CPUC PG Model on your desktop.

Page iv

1. INTRODUCTION TO ANALYTICA

1.1 Downloads

Visit this page to download and install Analytica 6.5. The Analytica Free 101 edition is free and will allow you to run the model.

Tips and recommended documents:

- Check your system properties (Windows Button->Computer->System Properties->System Type) to figure out if you have 32- or 64-bit operating system.
- Download the appropriate free version.
- New users are strongly encouraged to complete the Tutorial document (see "Tutorial" under "Help" menu when you open Analytica). The following tutorials are applicable to model users:
 - Tutorial: Open a model to browse
 - Tutorial: Reviewing a model
 - Tutorial: Analyzing a model
- A user's guide is also available under the "Help" menu when you open Analytica.

Additional information on computer needs from Lumina Decision Systems (maker of Analytica):

System Requirements

Windows OS: Analytica and ADE run on Microsoft Windows 64-bit OS, including Windows 10, 8, 7, Vista, Server, Server 2008, 2012 and 2016. Release 5.2 does not run on Windows 32-bit.

RAM: Analytica runs fine with only 1GB RAM, but it's helpful to have more for larger models. For large models and large Monte Carlo sample sizes, we recommend at least 8GB RAM.

Hard disk: The Analytica installer is under 60MB. When installed, it takes up to 140MB on your hard disk, including Analytica application, solver, example models and libraries.

Screen size: It's helpful to have a large screen if you want to build or view large models, especially if you want to see related documents or spreadsheets.

Macintosh: Analytica does not run on Macintosh OS, but, it does run nicely on a Mac using Parallels or VMWare to run Windows. (Max Henrion, the originator of Analytica and CEO of Lumina, runs Analytica on a Macbook.)

Source: https://lumina.com/support-2/analytica-downloads/

1.2 Introductory Videos

Guidehouse recommends viewing the following introductory videos from Lumina:

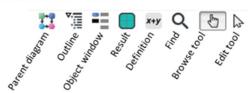
- Introduction to Analytica
 - https://www.youtube.com/watch?v=9s40FjHBm3E
- Getting Started with Analytica

©2025 Guidehouse.

- https://www.youtube.com/watch?v=2rm6WTn2js0
- Analytica Tutorial Chapter 1
 - https://www.youtube.com/watch?v=GQV0dnDN0Q0
- Analytica Tutorial Chapter 2
 - o https://www.youtube.com/watch?v=mpF4xcmKaao
- Analytica Tutorial Chapter 3
 - https://www.youtube.com/watch?v=scVOq29NMG4

1.3 User Guide Excerpts

Guidehouse has selected the following excerpts from the Lumina-produced user guide to highlight key terminology and navigation features in Analytica. All figures that appear in this section are sourced from the Lumina-produced users guide.¹


_

¹ Lumina Decision Systems. (2019). *Analytica User Guide*. Retrieved from Analytica Wiki: https://wiki.analytica.com/index.php?title=Analytica_User_Guide

1.3.1 Toolbar Introduction

The toolbar appears across the top of the Analytica application window. It contains buttons to open various views of the model, and to change between browse and edit modes.

Navigation toolbar: The first five buttons on the toolbar open a window relating to the variable or the object selected in the active (frontmost) window:

Parent Diagram button: Click to open the Diagram window for the module or model containing the object in the current active Diagram, Object, or Result window. It highlights the object you were viewing in the parent diagram. If you are viewing the top-level model, which has no parent, this button is grayed out. The keyboard shortcut is F2.

Outline button: Click to open the Outline window. The outline highlights the object you were previously looking at. The keyboard shortcut is F3.

Object windowbutton: Click to open the Object window for the selected node in a diagram or the active module. The keyboard shortcut is F4.

Result button: Click to open a Result window (table or graph) for the selected variable. This button is grayed out if no variable is selected. If you have selected more than one variable, it offers to create a compare variable that shows a result combining the values of all the variables. The keyboard shortcut is Control+r or F5.

x+y Definition button: Click to view the definition of the selected variable. If the variable is defined as a probability distribution or sequence, it opens the function in the Object Finder dialog; if the variable is an editable table (edit table, subtable, or probability table), it opens the **Edit Table** window. Otherwise, an Attribute panel or an Object window opens, depending on the **Edit Attributes** setting in the **Preferences** dialog. This button is grayed out if no variable is selected. The keyboard shortcut is **Control+e** or **F6**.

Q Find button: Brings up the Find Dialog. Use this to search for an object in your model by name or other criteria, or from a table to search for text appearing in the table. You can also use it search the Analytica wiki.

Edit buttons: These two buttons control your mode of interaction with Analytica. The shape of the cursor reflects which mode you are in:

Browse tool: Lets you navigate a model, compute and view results, and change inputs. It does not let you change other variables. See Browse mode.

Edit tool: Lets you create new objects, and move and edit existing objects. See Creating and editing nodes.

Tip

If the model is locked as browse-only, or if you are using the Power Player edition or the Free 101 edition with more than 101 user objects, only the browse tool is available.

Source: Lumina

1.3.2 Classes of Variables and Objects

The descriptions provided below are generalized and your model may not align with these definitions exactly. This is especially true for decision nodes in the model, which often represent a user input, rather than a decision to make. Furthermore, the model often employs constant nodes to depict imported data in addition to fixed conversion factors. Lastly, the color scheme within the model may differ from the information below.

Classes of variables and other objects

The shape of a node indicates the class of the variable or other object:

Decision

A rectangle depicts a **decision variable** — a quantity that the decision maker can control directly. For example, whether or not you take an umbrella to work is your decision. If you are bidding on a contract, it is your decision how much to bid.

An oval depicts a **chance variable** — that is an uncertain quantity whose definition contains a probability distribution. For example, whether or not it will rain tomorrow is a chance variable (unless you are a rain god). And whether or not your bid is the winning bid is a chance variable in your model, although it is a decision variable for the person or organization requesting the bid.

A hexagon depicts an **objective variable** — a quantity that evaluates the relative value, desirability, or utility of possible outcomes. In a decision model, you are trying to find the decision(s) that maximize (or minimize) the value of this node. Usually, a model contains only one objective.

A rounded shape (with thin outline) depicts a *general variable* — a quantity that is not one of the above classes. It can be uncertain because it depends on one or more chance variables. Use this class initially if you're not sure what kind of variable you want. You can change the class later when it becomes clearer.

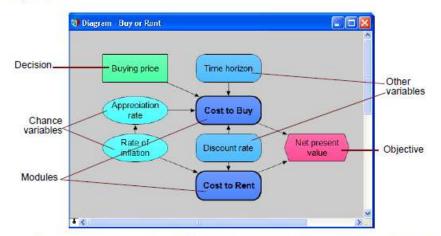
An hourglass shape depicts a **constraint** — a relationship utilized when solving constrained optimization problems in the Analytica Optimizer edition. The constraint node appears on the toolbar only when using Analytica Optimizer. Optimization is covered in the *Optimizer user guide*.

A rounded node (with thick outline) depicts a **module** — that is, a collection of nodes organized as a diagram. Modules can themselves contain modules, creating a nested hierarchy.

A parallelogram depicts an *index variable*. An index is used to define a dimension of an array. For example, Year is an index for an array containing the U.S. GNP for the past 20 years. Or *Nation name* is an index for an array of GNPs for a collection of nations. Indexes identify the row and column headers of a table, and the axes and key of a graph (see "Introducing indexes and arrays" on page 150).

A trapezoid depicts a *constant* — that is, a variable whose value is fixed. A constant is not dependent on other variables, so it has no inputs. Examples of numerical constants are the atomic weight of oxygen (16) or the number of feet in a kilometer. It is clearer to define a constant for each such value you need in a model, so you can refer to them by name in each definition that uses it, rather than retyping the number each time.

A shape like an arrow tail depicts a *function*. You can use existing functions from libraries, and define new functions to augment the functions provided in Analytica. See Chapter 21, "Building Functions and Libraries."


This node is a **button** — when you click a button (in browse mode), it executes its script to perform some useful action. You can use buttons with any edition of Analytica, but you need Analytica Enterprise or Optimizer to create a new button (see "Creating buttons and scripts" on page 407).

Source: Lumina

1.3.3 Influence Diagrams

Diagram window

When you open a model, it shows a **Diagram** window. This window usually shows an *influence diagram*, like this.

Each **node** depicts a variable (thin outline) or module (thick outline). The node shape and color tells you its class — decision, chance, objective, module, and so on. The arrows in a **Diagram** window depict the **influences** between variables. An influence arrow from variable ${\tt A}$ to variable ${\tt B}$, means that the value of ${\tt A}$ influences ${\tt B}$, because ${\tt A}$ is in the definition of ${\tt B}$. So, when the value of ${\tt A}$ changes, it can change the value (or probability distribution) for ${\tt B}$.

In the diagram above, the arrow from Buying price to Cost to buy means that the price of the house affects the overall cost of purchasing it. The influence diagram shows the essential qualitative structure of the model, unobscured by details of the numbers or mathematical formulas that can underlie that structure. For more on using influence diagrams to build clear models, see Chapter 7, "Creating Lucid Influence Diagrams."

If you check the Show module hierarchy box, the top of the active **Diagram** window displays the module path down to the current module:

You can jump to any parent or ancestor module by clicking on its name in the strip. When you click on an arrow, a tree menu displays other modules at that level and enables you to quickly navigate directly to any other module in the model:

Source: Lumina

1.3.4 Input/Output Nodes

Viewing input nodes

400K

An input field lets you see a single number or text value. Click in the box to edit the value. If it's a text value, you must put matching quotes around it (single or double).

10 ▼

A pull-down menu lets you choose from a list of options. Press the menu to see the list.

List

Click the **List** button to open a list of values, usually defining an Index. To change a value, click in its cell. For more about lists, see "Editing a list" on page 171.

Edit Table

Click to open an edit table showing an editable array with one or more dimensions displayed as a table. For more, see "Editing a table" on page 178.

Normal

Click to view and edit a probability distribution in the **Function Finder**. For more, see "Probabilistic calculation" on page 250.

Viewing output node values

Click the **Calc** button to compute and display the value of this output variable. When computing is complete, it shows a number in this node, or, if it's an array, it changes to the **Result** button and opens a **Result** window showing a table or graph. See Chapter 3, "Result Tables and Graphs" for more.

The **Result** button shows that an array has been calculated. Click it to open a **Result** window showing a table or graph. See Chapter 3, "Result Tables and Graphs" for more.

Opening module details

To see the structure of the model, double-click the module **Model details**, to display its diagram window (see "The Object window" on page 20).

Source: Lumina

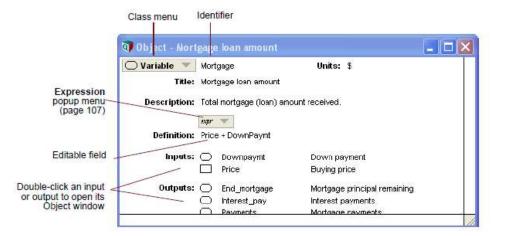
1.3.5 Numeric Suffixes

Suffix characters

Suffix is Analytica's default format. It uses a conventional letter after each number to specify powers of 10: 12K means 12,000 (*K* for kilo or thousands), 2.5M means 2,500,000 (*M* for Mega or millions), 5n means 0.000,000,005 (*n* means nano or billionths). Here are the suffix characters:

Power of 10	Suffix	Prefix	Power of 10	Suffix	Prefix	
		#	10-2	%	percent	
10 ³	K	Kilo	10 ⁻³	m	milli	
10 ⁶	M	Mega or Million	10 ⁻⁶	μoru	micro (mu)	
10 ⁹	G or B	Giga or Billion	10 ⁻⁹	n	nano	
10 ¹²	T	Tera or Trillion	10-12	р	pico	
10 ¹⁵	Q	Quadrillion	10 ⁻¹⁵	f	femto	

Tip


Note the difference between "M" for Mega or Million and "m" for milli (1/1000). This is the only situation in which Analytica cares about the difference between uppercase and lowercase. Otherwise, it is insensitive to case (except when matching text values).

Source: Lumina

1.3.6 Attributes of a Variable

The Object window

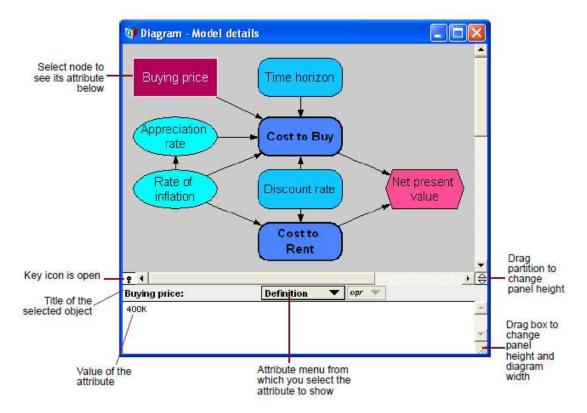
The **Object window** shows the attributes of an object. All objects have a class and identifier — a unique name of up to 20 characters. A variable also has a title, units, description, definition, inputs, and outputs.

To open an object window: Here are some ways to open the Object window for an object X:

- · Double-click X in a Diagram window.
- Select X in its Diagram window and click the Object button = (or the F4 key shortcut) in the navigation toolbar:

- · Double-click the entry for X in the Outline window.
- . If a Result window for X is displayed, click the Object button in the navigation toolbar.
- . Double-click X in the Inputs or Outputs list of a variable in an Object window.

Returning to the parent diagram: Click the Parent Diagram button in the navigation toolbar to see the diagram that contains this object, with the object's node highlighted.

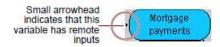

Source: Lumina

©2025 Guidehouse.

1.3.7 Attribute Panel

The Attribute panel

The *Attribute panel* offers a handy way to rapidly explore the definitions, descriptions, or other attributes of the variables and other nodes in a **Diagram** window. You can open the panel below the diagram, and use it to view or edit any attribute of the node you select. It shows the same attributes that you can see in the **Object** window, and often several other attributes.

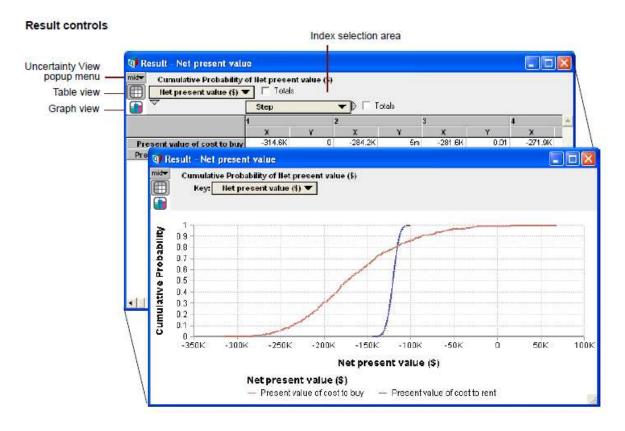

Click the key icon 3 to open the Attribute panel. Here are things you can do in this panel:

- · Select another node in the diagram to see the selected attribute of a different object.
- Click the background of the diagram to see the attributes of the parent module.
- · Select another option from the Attribute menu to see a different attribute.
- To enter or edit the attribute value, make sure you are in edit mode, and click in the Attribute panel, and start typing. (Not all attributes are user-editable.)

Seeing remote inputs and outputs

When a variable has a Remote input — that is, it depends on a variable in another module — a small arrowhead appears to the left of its node. Similarly, if it has a remote output, a small arrowhead appears to its right Press on the arrowhead to quickly view and navigate influences between nodes in different diagrams (modules).

To see a list of the inputs (or outputs), remote and local, press the arrowhead on the left (or right) of the node



To jump to a remote input or output, select it from the list and stop pressing. It opens the **Diagram** window containing the remote variable, and highlights its node.

Source: Lumina

1.3.8 Result Viewing Options

There are many options for viewing results. Note that in the uncertainty view menu, only the "Mid value" (i.e., deterministic results) is valid because this is not a probabilistic model.

Source: Lumina

To open a Result window

Click the variable node in its influence diagram to select it, and do one of these:

- Click the Result button in the toolbar, or press key Control+r.
- · Select Show Result from the Result menu.
- Select an uncertainty view option, such as Mid Value, Mean Value, or Cumulative probability, from the Result menu.
- In the Attribute panel below a diagram, select Value or Probvalue from the Attribute menu, and click the Calc or Result button.

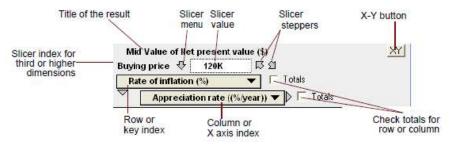
To open a Result window for an output node, simply click its Calc or Result button.

Result controls

The Result controls, in the upper-left corner of the Result window include these controls:

Press the **Uncertainty View** popup menu (page 29), to select how to display an uncertain quantity.

Click this button to display the result as a table.



Click this button to display the result as a graph.

Toggle between the table and graph views using the Table View and Graph View buttons.

Index selection

The Index selection area is the top part of a Result window. For a table, it shows which index goes down the rows, and which goes across the columns. For a graph, it shows which index is on the X axis (and sometimes Y axis) and which is in the key. For either view, if the array has too many dimensions to display directly, it also shows *slicers* that select the values of the extra indexes. Each control has a popup menu to let you exchange indexes and rearrange (*pivot*) the view.

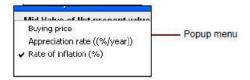
The index selection area of a graph or table contains these items (example variables and indexes in the following text refer to the figure above):

Title Shows the uncertainty view (mid, mean, etc.), the title of the variable, and its units, e.g., Mid Value of Costs of buying and renting (\$).

Slicer index

The title, units, and value of any index(es) showing dimensions not currently displayed in the table or graph.

Slicer menu


Press Φ for a popup menu from which you can change the slicer value for the results displayed.

Slicer stepper arrows

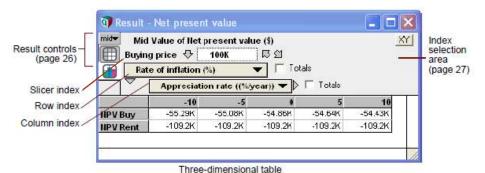
Click or to cycle up or down through the slicer values.

Row or key index Shows the title of the index displayed down rows for a table, or in the color key for a graph. Press to open a menu from which you can select another index.

Column or X axis index Shows the title of the index displayed across the columns for a table, or along the X (horizontal) axis for a graph. Press to open a menu from which you can select another index.

XY button

Click XY to plot this variable against one or more other variables, or to plot one slice of this variable against another slice. See "XY comparison" on page 95.


Totals checkboxes

Check a box to show row or column totals the table view. If you check Totals for an index and then pivot it to be a slicer index, "Totals" becomes its default slicer value. This lets you show total values over the slicer index in the graph or table.

Source: Lumina

Viewing a result as a table

Toggle to table view If a result window shows a graph, click on the top-left to switch to table view.

Use this menu to select which index to display down the rows of the table. Select blank to display Row index (down)

a single row.

Column index Use this menu to select which index to display across the columns of the table. Select blank to

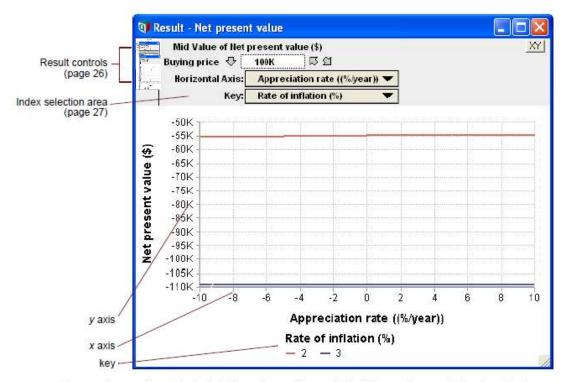
The index display options depend on the number of dimensions in the variable.

display a single column.

Slicer index(es) If the array has more than two indexes, the extra index(es) are shown as Slicer menus. The table

shows values only for the slice (subarray) setting the slice index to the shown slicer value. Open the slicer menu 🐶 and select a different slicer value, or click 🂢 or 🎢 to step through the slicer

values.


Formatting numbers To specify the format for the numbers in a table or along the Y (usually vertical) axis of a graph, show the graph and select Number Format from the Result menu, or press Control-b. The Num-

ber format dialog (page 78) offers many options, including currency signs, dates, and Booleans.

Source: Lumina

Viewing a result as a graph

Toggle to graph view If a result window shows a table, click on the top-left to switch to graph view.

The **y** axis, usually vertical, plots the values of the variable. The **x** axis, usually horizontal, shows the value of a selected index. The index display options depend on the number of dimensions in the variable.

X axis If the array has more than one index, use this menu to select which index to display along the x axis (usually horizontally).

Key index If the array has more than one index, use this menu to select which index to display in the key, usually showing each value by color.

If the array has more indexes than you can assign graphing roles (such as x axis or key), the extra indexes are shown as **Slicer** menus, as in a table view. The graph shows values only for the slice (subarray) setting the slice index to the shown slicer value. Open the slicer menu and select a different slicer value, or click or of to step through the slicer values.

To reorder slicers If the graph has more than one slicer index, you can reorder the slicer indexes simply by dragging one up or down.

There is a rich variety of ways to customize the graph, including line style (lines, data points, symbols, barcharts, stacked bars, thickness, transparency), axis ranges, log or inverted axes, grid and tickmarks, background colors, and font color and size. To change these settings, open the **Graph Setup dialog** (page 85) and do one of the following:

- Select Graph Setup from the Result menu.
- Double-click anywhere on a graph in the Result window.

Source: Lumina

Slicer index(es)

Graph setup options

2. CPUC PG Desktop Model

This section provides exercises related to changing key model settings and viewing results. To perform these exercises, you will first need to open the model.

2.1 Opening the Model

Open the model by double-clicking on the CPUC_2025_PG_Model_PublicVersion.ana file in the folder where it resides. After you have opened the model file, you will see an "Information" pop-up like the one shown in Figure 2-1 if you are using Analytica Free 101. This is not an error and will not cause any issues with the model. Click "OK" to proceed to the Disclaimer and Terms of Use.

Information

This model contains 7121 user objects. You can't edit this model with this Analytica Free 101 edition because the model has more than 101 variables and other user-defined objects. You may review and run the model in Browse mode with the Free 101 edition.

To edit this model, you must upgrade to Analytica Professional or a higher edition, which you can do from the Buy Analytica link below.

Don't show me this again.

Don't show me this again.

OK

method to with the methodology described in the final report. While this model is capable of produing the production of the state of the production of the prod

Figure 2-1. Initial Pop-up

The next screen will show the disclaimer, terms of use, and runtime notes as shown in Figure 2-2. Click "Accept" to proceed to the main top-level Graphical User Interface (GUI) as shown in Figure 2-3.

©2025 Guidehouse.

Figure 2-2. Disclaimer and Terms of Use

2025 & Beyond California Energy Efficiency Potential & Goals Study

Disclaimer & Terms of Use

This model was developed by Guidehouse and its subcontractors for the California Public Utilities Commission (CPUC).

Guidehouse is not responsible for the users use of, or reliance upon, the model, nor any decisions based on this model.

GUIDEHOUSE MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESSED OR IMPLIED.

Users of the model are advised that they assume all liabilities incurred by them, or third parties, as a result of their reliance on the model, or the data, information, findings and opinions contained in the model.

This model should not be used without consulting the accompanying final report submitted to the CPUC in April 2023. The methodology in this version of the model is consistent with the methodology described in the final report. While this model is capable of producing custom scenario results, this release is pre-programmed to show results for the 5 scenarios presented in the final report:

- Reference
- 2: High TRC
- 3: Aggressive Fuel Sub
- 4: Reference ZEAS Phase-In
- 5: High TRC ZEAS Phase-In
- 6: Aggressive Fuel Sub ZEAS Phase-In

The CPUC reserves the right to disregard results produced by this model that do not appear in the final report. Additionally, though this model can be used as a guide for program design, it should not be solely used as a measure-level program design tool.

System Requirements and Runtime Notes

The 64-bit version of the Analytica Free Edition Player is required to run this model. Aminimum of 4 GB of RAM is required to open and run portions of the model. Some portions of the model require additional RAM to run.

Version Notes

Press the "Accept" button to acknowledge that you have read the above disclaimer to proceed to the model.

ACCEPT

2025 & Beyond California Guidehouse **Public Utilities** California Energy Efficiency Commission Potential & Goals Study READ ME **Model Details** Filter Settings Key Outputs **Equipment Results by End Use** The following outputs show results from equipment savings in IOU rebated programs only. Filters Technical Potential by End Use Calc Scenario Settings Economic Potential by End Use Calc Pre-programmed Incremental Market Potential by End Use Calc Select Scenario Scenario 1: Reference Cumulative Market Potential by End Use Calc Scenario Assignments Total Spending Calc Potential to Evaluate Tech, Econ & Achievable Total System Benefits by End Use Custom Portfolio Cost-Effectiveness (ratio) Calc Screening Cost Test Total Resource Cost Test 🔻 Benefit-Cost Threshold (ratio) Table Please note that the following outputs are not impacted by the end use filters. **BROs Results** Other Settings The following outputs present savings and spending from behavioral programs **BROs Incremental Market Potential** Accumulation Start Year 2025 BROs Cumulative Market Potential Calc • Include BROs in Portfolio CE? No **BROs Spending** Calc Key Assumptions & Data **Codes and Standards Savings** Incremental C&S Savings Selected Measures Calc Cumulative C&S Savings

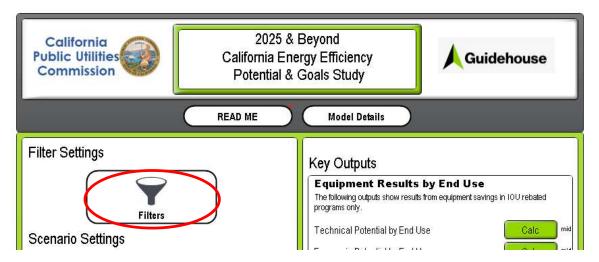
Figure 2-3. Graphical User Interface

2.2 Changing Key Model Settings and Viewing Results

Additional Assumptions

Note that the figures in this section are illustrative. For the most up-to-date modeling results, please use the results viewing dashboard or the model.

Measure-Level Outputs


©2025 Guidehouse.

2.2.1 Exercise: Using Measure Filters

Goal: In this exercise, you will learn how to use measure filters to run subsets of the model based on the available filters provided: building type, utility, end use, replacement type, and measure name. By using filters you decrease the amount of data the model processes decreasing model run time and RAM usage.

1. Open the "Filters" module by double-clicking on the module (or use Ctrl+f to search for the Filters identifier)

Figure 2-4. Measure Filters Module in Top-level GUI

This should then open the GUI. Depending on the utility and model version, there may already be a set of filters that have been applied. For the purposes of this exercise, please set all the filter drop-downs to "None", as shown below.

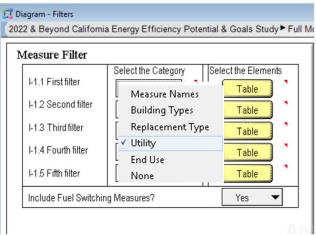
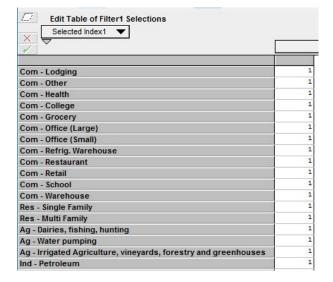
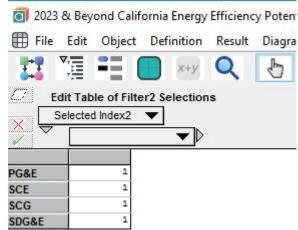

Diagram - Filters 2022 & Beyond California Energy Efficiency Potential & Goals Study ▶ Full Mc Measure Filter Select the Category Select the Elements I-1.1 First filter None Table I-1.2 Second filter None Table I-1.3 Third filter • None Table I-1.4 Fourth filter None Table I-1.5 Fifth filter None Table Include Fuel Switching Measures?

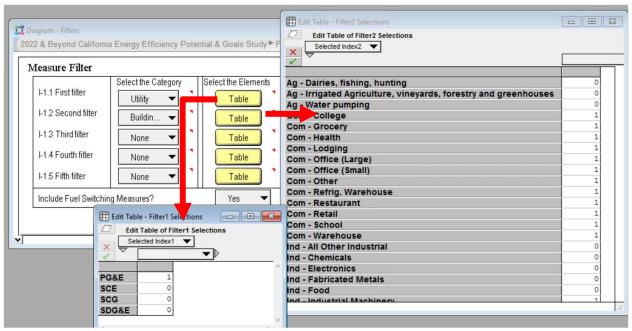
Figure 2-5. Measure Filters GUI


Next, the goal is to run a subset of the model by selecting one utility and a subset of building types. To do this, set the first filter category to "Utility" and the second filter category to "Building Type" using the drop-down menus.


Figure 2-6. Set the First Filter Category to Utility

Once the filter categories for the first and second filters have been set, the filter elements need to be selected by clicking on the "Edit Table" buttons as shown below to the right of the drop-down menus. For this exercise, select only one service territory as appropriate (e.g., PG&E) and only the building types that correspond to the commercial sector. This is done by placing 1s next to the elements to be included and 0s next to elements to be excluded. Copy-paste functionality is supported in tables. Figure 2-7 below illustrates the use of the "Edit Tables" to select filter elements for one service territory (PG&E) and the commercial sector.

Figure 2-7. Set the First and Second Filter Elements



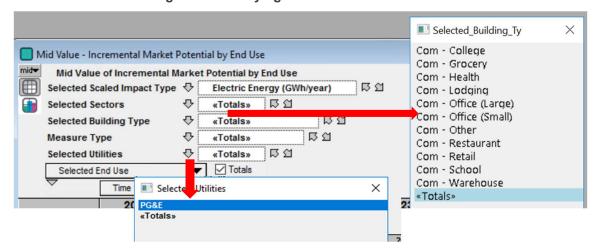

3. To verify that the filter settings are correct, go to the top-level GUI and click the "Calc" button next to "Incremental Market Potential by End Use" under the "Key Outputs" section (or use Ctrl+f to search for the identifier Incremental Market P).

Figure 2-8. Location of Calc Button for Incremental_Market_P in GUI

After the result has been computed, you can verify that the drop-downs for "Selected Building Types" and "Selected Utilities" are correct by clicking on the downward facing arrow next to each Index element as shown below.

Figure 2-9. Verifying Index Elements in Result Window

Optional Task: For further practice, go back to the "Measure Filters" module and select residential building types to run in addition to the commercial building types. Now go back and recompute Incremental_Market_P to verify that the appropriate building types show up in the "Selected Building Types" index.

2.2.2 Exercise: Viewing Key Outputs in the GUI

Goal: The goal of this exercise is to use the GUI to display model results.

Navigate to the right-hand side of the GUI to access key outputs. Hover over any of the text to the
left of the "Calc" buttons to see a description of the node. Then, click on the "Calc" button to
generate results for the settings selected on the left-hand side of the GUI. <u>Depending on the
filters applied and output result, these results can take a few seconds to several minutes
to run</u>. A progress bar will apear as the model is running to indicate status of calcultions.

Key Outputs **Equipment Results by End Use** The following outputs show results from equipment savings in IQV rebate programs only. Technical Potential by End Use Calc Economic Potential by End Use Calc Incremental Market Potential by End Use Calc Cumulative Market Potential by End Use Calc Total Spending Calc Total System Benefits by End Use Calc atio) Portfolio Cost-Effectiveness Calc Please note that the following outputs are not impacted by the end use filters. **BROs Results** The following outputs present savings and spending tom behavioral programs **BROs Incremental Market Potential** BROs Cumulative Market Potential Calc **BROs Spending** Calc **Codes and Standards Savings** Incremental C&S Savings Calc Cumulative C&S Savings Measure-Level Outputs

Figure 2-10. Accessing Key Outputs in GUI

2. To access outputs displayed by measure, double click on the node labeled 'Measure-Level Outputs'. This will open a window as shown in Figure 2-11, and results can be viewed by clicking on any of the green buttons.

Diagram - Measure-Level Outputs

2022 & Beyond California Energy Efficiency Potential & Goals Study Full Model Measure-Level Outputs

Equipment Savings by Measure

Cost-Effectiveness for Equipment Savings

The following outputs show results from equipment savings in IOU rebated programs only.

Technical Potential by Measure

Economic Potential by Measure

Calc mid

Incremental Market Potential by Measure

Curnulative Market Potential by Measure

Calc mid

Calc mid

Calc mid

Measure-Level Outputs

Measure-Level Outputs

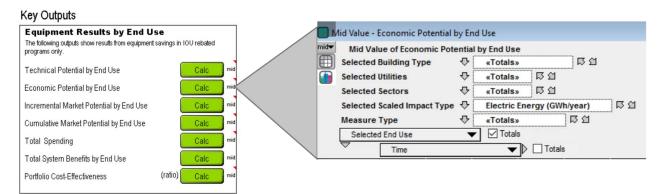
Measure-Level Outputs

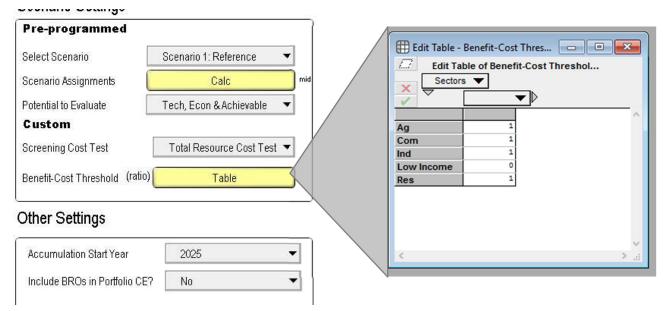
Figure 2-11. Accessing Measure-Level Outputs

2.2.3 Exercise: Changing Key Inputs in the GUI

Goal: The goal of this exercise is to make a change to one or more key inputs in the GUI and re-evaluate the model. This will help you get familiar with making changes to model settings and inputs using the customized GUI.

 Evaluate "Economic Potential by End Use" to examine the Economic Potential before making custom changes to the cost settings.




Figure 2-12. Location of Calc Button for Economic Potential

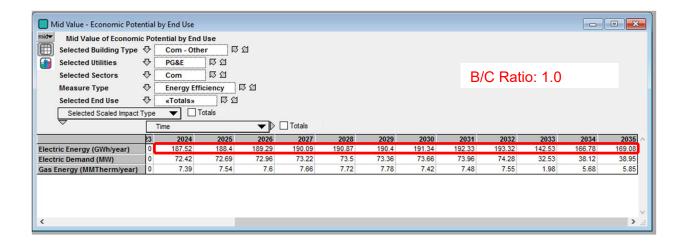
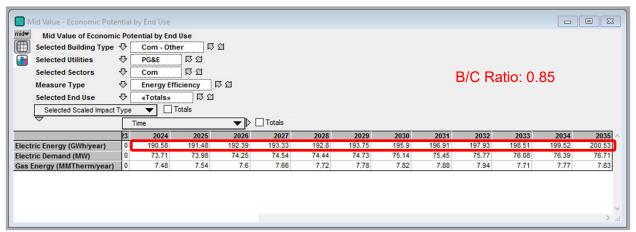

2. Click on the "Table" button next to "Benefit-Cost Threshold" and change the ratio for Commercial to 0.85 as illustrated in Figure 2-13.

Figure 2-13. Edit Table for Benefit-Cost Threshold



 To verify the impact of changing this input, evaluate the output node "Economic Potential by End Use". You should now see a noticeable increase in the Economic Potential due to a lowering of the Benefit-Cost Threshold, as illustrated in Figure 2-14 below.

Figure 2-14. Verifying Impact of Changing B/C Ratio

Note: While this exercise only covered changing the B/C Threshold, all dropdown menus, tables, and input fields on the left-hand side of the GUI can all be modified to generate custom results. Note that selecting a scenario under "Pre-Programmed" scenarios will auto-populate all fields according to the table "Scenario Assignments". Additional inputs can be found by double-clicking the "Additional Assumptions" module.

2.2.4 Exercise: Pivoting and Customizing Result Tables and Graphs

Goal: The goal of this exercise is to learn how to pivot indexes in result tables as well as to customize graphs. When representing multi-dimensional results, Analytica will display only a two-dimensional slice of the data. This exercise will show you how to change the orientation and selection of data by pivoting the graph or table. It will also illustrate how to make changes to graph settings.

- For this exercise, you will first run the model with customer segments across a subset of building types. Using the "Filters" module, select your desired customer segments. The example shown in Figure 2-15 was run with the first four Commercial segments selected.
- 2. Re-evaluate the result node "Incremental Market Potential by End Use" (Incremental_Market_P). You should see a default graphical view as shown in Figure 2-15 with "Time" on the horizontal axis and "Incremental Market Potential by End Use" on the vertical axis. The task is to pivot this graph such that we can graphically view the sum total achievable potential across all building types over time.

Mid Value - Incremental Market Potential by End Use mid▼ Mid Value of Incremental Market Potential by End Use Selected Scaled Impact Type 🐶 Electric Energy (GWh/year) ₽ «Totals» ♬ 筎 Selected Sectors ្ឋ Selected Building Type 中 «Totals» Measure Type 47 Energy Efficiency □ □ «Totals» □ □ Selected Utilities Horizontal Axis: Selected End Use ▼ 35 Incremental Market Potential by 30 25 Selected End Use **End Use** Data Center
WholeBig 20 WaterHeat Lighting
HVAC
FoodServ 15 ComRefrig AppPlug 10 2025 2027 2021 2024 2026 2028 2020 2022 2023 2029 2030 **Time**

Figure 2-15. Default Graphical View of Incremental_Market_P

3. To accomplish this, click on the drop-down next to "Key" and select "Selected Sectors" from there as shown in Figure 2-16. The updated result graph should look like the screenshot in Figure 2-17.

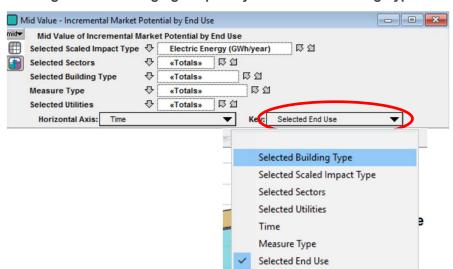


Figure 2-16. Changing Graph Key to Selected Building Types

Mid Value - Incremental Market Potential by End Use - - X Mid Value of Incremental Market Potential by End Use Selected Scaled Impact Type 💠 Electric Energy (GWh/year) «Totals» 尽臼 Selected Sectors Measure Type T. Energy Efficiency □ □ Selected Utilities «Totals» □ □ ₽ 四四 Selected End Use «Totals» Horizontal Axis: Time ▼ Key: Selected Building Type ▾ 35 Incremental Market Potential by 30 25 **End Use** Selected Building Type 20 Com - Other Com - Lodging Com - Health
Com - Grocery
Com - College 15 10 5 2025 2022 2023 2024 2026 2027 2028 2020 2021 2029 2030 Time

Figure 2-17. Result Graph after Key Change

4. Next, to graphically view achievable potential across both selected sectors, right click on the graph and select "Graph setup" to open the dialog box as shown below (alternatively, you can double-click on the graph to open the dialog box).

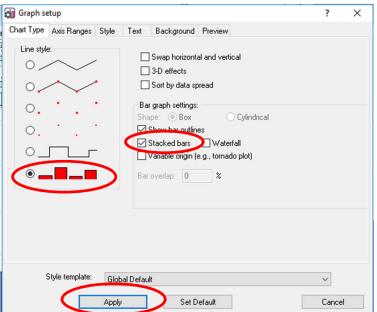

| Company | Comp

Figure 2-18. Opening the Graph Setup Dialog Box

5. You will now customize the Chart Type by selecting the "bar graph" icon under "Line style" and checking the box next to "Stacked", before clicking on "Apply". The updated graph should resemble Figure 2-20.

- - X Mid Value - Incremental Market Potential by End Use Mid Value of Incremental Market Potential by End Use Selected Scaled Impact Type 💠 Electric Energy (GWh/year) Selected Sectors 4 «Totals» 🛭 🛱 4 Measure Type Energy Efficiency

□ □ Selected Utilities 4 «Totals» □ □ Selected End Use «Totals» 可以四 Horizontal Axis: Time ▼ Key: Selected Building Type ▼ 35 Incremental Market Potential by 30 25 End Use Selected Building Type 20 Com - Other
Com - Lodging
Com - Health
Com - Grocery 15 Com - College 10 5 0 2025 Time

Figure 2-20. Graphical View after Changing Chart Type to Stacked Bar Graph

6. Finally, switch from the Graphical view to the Tabular view in Analytica by clicking on the numbered icon as shown on the top left of the graph.

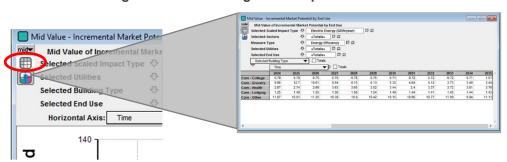
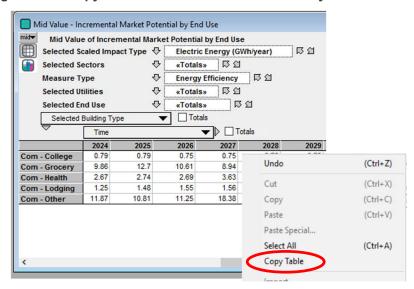


Figure 2-21. Switching from Graphical View to Tabular View

2.2.5 Exercise: Copying and Pasting Results into Excel

There are several methods to copy and paste results to Excel. This exercise walks through each of those methods.


Goal: The goal of this exercise is to manually copy and paste results from the model into Excel using the CopyTable feature to copy multi-dimensional results into Excel. This offers a quick and easy way to port

results into Excel. The one caveat about this approach is that the multi-dimensional results when pasted into Excel are in a format that makes it difficult to manipulate easily (e.g. using Pivot tables).

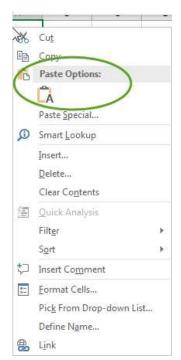

1. Re-evaluate Incremental_Market_P and switch to the Tabular view. Right-click on the table and select "Copy Table" as shown below.

Figure 2-22. Copy Table Function Illustration in Analytica

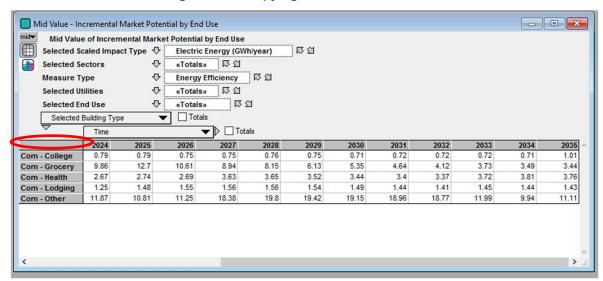
2. To paste the results, open a new Microsoft Excel workbook and right-click in an empty cell before selecting the "Paste" icon as shown below

Figure 2-23. Excel Paste Illustration

Page 16

©2025 Guidehouse.

The pasted multi-dimensional results in Excel will look like Figure 2-24.


Figure 2-24. Pasted Multi-Dimensional Data in Excel

			J	_		_	
TextTable Value Increme	ental_Market	_P					
Select_Scaled_Impact	Electric En	ergy (GWh	/year)				
Selected_Sectors	Com						
Measure_Type	Energy Eff	iciency					
Selected_Utilities	PG&E						
Selected_End_Use1	AppPlug						
Time1	2018	2019	2020	2021	2022	2023	
Selected_Building_Ty							
Com - College	0.016072	0.013698	0.012637	0.014048	0.015453	0.024892	
Com - Grocery	0.001378	0.001266	0.000692	0.001302	0.00066	0.001095	,
Com - Health	0.028065	0.029542	0.022667	0.018565	0.017832	0.036766	,
Com - Lodging	0.005761	0.005471	0.004155	0.004108	0.004501	0.016088	8
Selected_End_Use1	BldgEnv						
Time1	2018	2019	2020	2021	2022	2023	
Selected_Building_Ty							
Com - College	0.017949	0.021532	3.78E-05	0.000137	0.000285	0.0003	
Com - Grocery	0.029663	0.024812	0.000114	0.000125	6.95E-06	6.6E-06	,
Com - Health	0.050065	0.053844	0.000783	0.000709	0.000748	0.000781	
Com - Lodging	0.047087	0.046632	0.000766	0.000858	0.001037	0.001034	
Selected_End_Use1	ComRefrig						
Time1	2018	2019	2020	2021	2022	2023	

Goal: the goal of this exercise is to manually copy and paste a 2-D slice, rather than the entire multidimensional table, into Excel. Often, Analytica's formatting when using the CopyTable feature is difficult to work with, so this approach offers an alternative method.

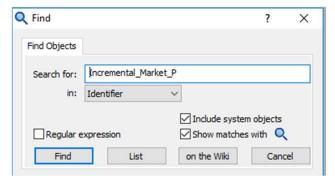
1. With the Incremental_Market_P result window still open, click on the gray cell at the upper left hand corner of the result table. This will highlight all data, column headers, and row headers in the slice of data being viewed. Use "Ctrl+C" to copy the highlighted data selection (alternatively, you can right click on the data table and select "Copy").

Figure 2-25. Copying a Slice of a Data Table

2. The copied data can then be pasted into excel using "Ctrl+V" (or using Excel's paste features). The pasted data will have the same orientation as shown in Analytica (e.g., rows represent sectors and columns represent time). Note that the number format in Analytica does not always carry over to Excel, so it is best to apply number formatting directly in Excel.

Figure 2-26. Pasted Data Slice in Excel

	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Ag	34.42097	30.5551	33.10169	42.17583	42.4402	40.84115	38.13854	35.04002	32.41979	30.4921	29.64208	30.03043	32.33511
Res	88.22169	25.64204	27.11595	45.18882	70.83667	79.7453	85.08083	89.11068	89.56228	88.19745	85.77016	84.05542	82.10134
Total	122.6427	56.19714	60.21764	87.36465	113.2769	120.5865	123.2194	124.1507	121.9821	118.6895	115.4122	114.0858	114.4364


Tip: If you're not interested in copying/pasting an entire multi-dimensional table or 2-D slice of a table, you can highlight just the (adjacent) cells of interest from a data table and paste them into Excel. Highlighting individual cells in Analytica is performed the same way as you would in Excel (i.e., click and drag your cursor over desired cells). Additionally, you can click on the row headers and column headers to highlight all cells pertaining to a selection of contiguous rows or columns, respectively, and copy/paste that subset of data into Excel.

2.2.6 Exercise: Finding a Variable using its Identifier

Goal: The goal of this exercise is to use the search feature in Analytica to locate a variable in the model. This is particularly useful if you know the identifier of a variable and are trying to locate it in the model. While this exercise illustrates how to search by using the identifier of a variable, it is also possible (and useful) to search based on the title of a variable.

1. Click "Ctrl +F" and search for the object Incremental_Market_P by using its identifier (make sure "Identifier" is selected in the dropdown) and clicking the "Find" button.

Figure 2-27. Searching for an Object Based on its Identifier

This should then launch the diagram window with the variable highlighted as illustrated below.

🔀 Diagram - End Use Rollup - - X 2018 & Beyond California Energy Efficiency Potential & Goals Study ▶ Full Model ▶ Model Details ▶ Key Results ▶ End Use Rollup ▶ Incremental gross market potential in units of GWh, MW and MMTherms Include Ag/Ind Increm Gross Increm Tech Increm Econ Increm Achieve Cumul Achieve Stranded Pot Generic Custom & Achieve Pot Potential Output Potential Output Pot Output Pot Output ET Measures? Output Output For output reindexing, Batched Outputs without Measure Granularity separate from main selected_end_use Cumulative Technical Economic Increm Gross Potential by Potential by Market Potential Achieve Pot by Potential by End Use End Use End Use by End Use Selected End

Figure 2-28. Diagram Window with Variable Highlighted

2.3 Navigating Through Model Logic

This section provides exercises that will help you get comfortable with navigating through the model logic. There are two main options for navigating through the model to explore the logic and locate select variables in downstream modules. This section offers an exercise for each of these options.

2.3.1 Exercise: Navigating using the Module Hierarchy

Goal: In this exercise, you will learn how to explore the model using the Module Hierarchy feature in Analytica. Often large models have many layers of hierarchy. The hierarchy depth of each module can be viewed by simply setting a global preference (covered below) at which point you will be able to easily navigate the hierarchy of the model.

1. Select "Preferences" from the Edit menu to display the Preferences dialog. Next, check the "Show module hierarchy" box as shown in Figure 2-29. After you do this, the top of the active Diagram window displays the module path to the current module:

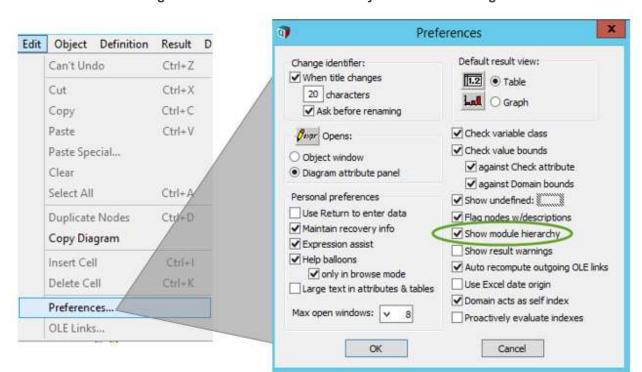


Figure 2-29. Show Module Hierarchy Preference Setting

2. Next, the goal is to use the module hierarchy outline to navigate to the Building_Stock module and locate the variable Bldg_Stk_by_Source. First, click on the black arrow next to "Full Model" which will open a tree menu as shown below. Click on the + sign next to "Model Details" and this should open a module hierarchy for the "Model Details" module. From there, navigate to the "Building Stock" module within "Building & End Use Stocks" module, as illustrated in Figure 2-30 and Figure 2-29.

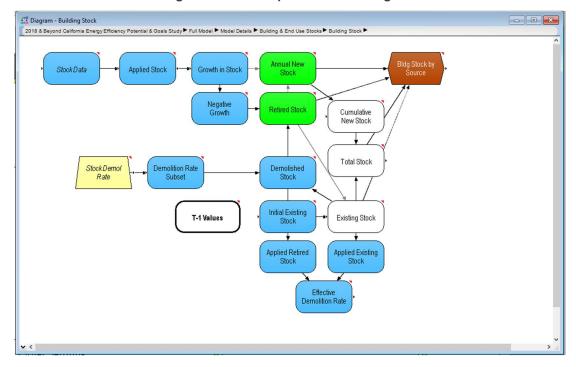

2018 & Beyond California Energy Efficiency Potential & Goals Study ► Full Model ⊕ Measure Char Import & QC Measure-Level Outputs - Model Details ⊕ Per-Unit Savings + All Potential ⊕ Benefit/Cost Tests Building & End Use Stocks
Building Stock
T-1 Values Consumption Based Stock
Total End Use Stocks +- Calibration + Cash Flows ⊕ Data Import/ Export + Formatted Input Data Modules to Hide from Public Version

Figure 2-30. Access Building Stock Module Using Module Hierarchy

Figure 2-31. Example Influence Diagram

· Other Modules to Remove from Public Version

- Sales/ Consumption
- Sensitivity Analysis
- System Variables
- More Inputs
- Multiplier Impacts
- READ ME

2.3.2 Exercise: Navigating using the Model Details

Goal: In this exercise, you will learn to use the "Model Details" module to navigate. This offers a second option for browsing the model logic.

©2025 Guidehouse.

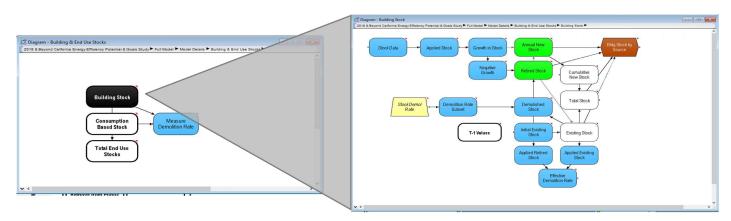

1. From the top-level GUI, under the title, double-click on the "Model Details" module, as shown in Figure 2-32.

Figure 2-32. Accessing Model Details

2. Next, double-click on the "Building & End Use Stocks" module under "Core Model Logic". This will open-up a module with several variables and sub-modules. To launch the "Building Stock" influence diagram, double-click on the relevant module as illustrated in Figure 2-33.

Figure 2-33. Accessing the Building Stock Module

