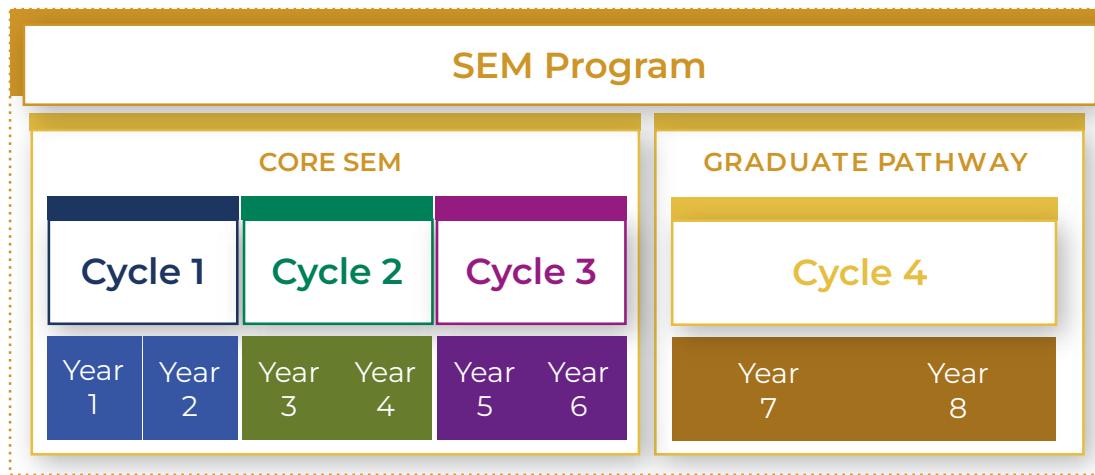


California SEM Program M&V Guide

VERSION 4.0, JULY 31, 2025

INDEX

		OVERVIEW
1	Overview	3
1.1	Goals and Objectives of Conducting the M&V Process	5
1.2	Terminology	5
1.3	Methods of Determining Energy Savings	6
1.4	Avoided Energy Consumption and Annualized Energy Savings	7
1.5	Customer Learning and Leading the M&V Process	9
1.6	Relationship to Other M&V Guides	10
1.7	Relationship to the NMEC Rulebook	10
2	Planning	11
2.1	SEM Time Periods, Tools, and Reviews and Reports	12
2.2	Characterizing the Site	16
2.3	Relevant Variables	20
2.4	Planning for Energy Data Collection	24
2.5	Selecting the M&V Boundaries and Method	28
2.6	Collecting Data and Assessing Data Quality	32
3	Energy Consumption Adjustment Modeling	36
3.1	Introduction	37
3.2	Process	37
3.3	Considerations when Developing Energy Consumption Adjustment Models with Data from Multiple Meters	38
3.4	Establishing Relationships Between Energy Consumption and Relevant Variables	38
3.5	Establishing Energy Baseline	40
3.6	Developing Energy Consumption Adjustment Models	41
3.7	Reviewing Competing Energy Consumption Adjustment Models	43
3.8	Selecting Energy Consumption Adjustment Models to Track Energy Performance and Calculate Energy Savings	45
3.9	Ongoing Confirmation of Model Validity	45
3.10	Options when a Valid Energy Consumption Adjustment Model Cannot be Created or Models in use Fail Validity Tests	46
3.11	Continued Use of Energy Baselines and Energy Consumption Adjustment Model(s)	49
3.12	Monitoring Energy Performance	50
3.13	Calculating Energy Savings with Energy Consumption Adjustment Models	53
4	Reviewing and Reporting of Energy Savings	59
4.1	Preparing Energy Savings for Regulatory Reporting	60
4.2	Calculating Demand Savings	66
4.3	Greenhouse Gas Savings	66
4.4	Mid-Year Review of the M&V Process	70
4.5	SEM Reporting Period Performance Report Preparation Checklist	72
5	Annex	79
5.1	References	80
5.2	Acknowledgements	81
5.3	Annex A Terminology	81
5.4	Annex B Special Cases in Energy Accounting	87
5.5	Annex C Bottom Up EPIA Calculation Effort and Documentation	90
5.6	Annex D Multicollinearity and Autocorrelation	94
5.7	Annex E Graphical Representation of the Table of Competing Models	96
5.8	Annex F Fractional Savings Uncertainty Scenarios	97
5.9	Annex G Cumulative and Incremental Savings Example	98
5.10	Annex H Total System Benefits	100
5.11	Annex I Revision History	101


1 Overview	4
1.1 Goals and Objectives of Conducting the M&V Process	5
1.2 Terminology	5
1.3 Methods of Determining Energy Savings	6
1.3.1 Energy Consumption Adjustment Models	6
1.3.2 Aggregation of Energy Savings from Individual EPIA	7
1.4 Avoided Energy Consumption and Annualized Energy Savings	7
1.5 Customer Learning and Leading the M&V Process	9
1.6 Relationship to Other M&V Guides	10
1.7 Relationship to the NMEC Rulebook	10

1. Overview

2 The purpose of this California SEM Measurement and Verification Guide (M&V Guide) is to define a set
 3 of principles, guidelines, and requirements that establish a systematic measurement and verification
 4 (M&V) process which can be used by any stakeholder as part of participation in a publicly funded Pro-
 5 gram Administrator (PA) sponsored strategic energy management (SEM) Program. The requirements of
 6 this M&V Guide shall be adhered to when a site is participating in a PA sponsored SEM Program paid for
 7 with ratepayer funds. Outside of a PA sponsored SEM Program, a site may wish to adapt elements of this
 8 M&V Guide to suit their own energy management business practice needs.

9 This M&V Guide is designed to work in coordination with the California SEM Program Design Guide
 10 (Design Guide) version 2.0 and later and is applicable to all customer segments (industrial, commercial,
 11 institutional, etc.). The SEM Program has two key sections:

- 12 ■ 1. Core SEM, which through three, two-year Cycles, help customers develop energy
 13 management business practices and save energy through their implementation.
- 14 ■ 2. The Graduate Pathway, which is a two-year Cycle but has a different approach and set of
 15 objectives.

16 A primary principle of the Core SEM is that over the three Cycles the customer will develop and learn to
 17 manage business practices that make up a well-structured and systematic energy management system
 18 (EnMS) based upon the ISO 50001:2018 standard.

19 A primary principle of the Graduate Pathway is that the customer has and maintains the business prac-
 20 tices they developed in the Core SEM and is able to expand them.

21 This Guide applies to both Core SEM and the Graduate Pathway.

22 *In the context of the California SEM Program, M&V is the process of:*

1. Overview

23 The site participating in the SEM Program (customer), the SEM implementation contractor (implementer), and the PA are the three primary stakeholders who will be engaged in conducting the various elements of the M&V process.

26 The California Public Utilities Commission (CPUC) has specified in decision and other documentation that this M&V Guide provides the basis by which energy savings shall be determined as part of a PA sponsored SEM program. The sponsoring PA will direct the customer and implementer as to when energy savings shall be reported to the CPUC for regulatory reporting. This M&V Guide should serve as the basis of the validation of energy savings and contains the requirements that shall be followed when a customer is participating in a PA sponsored SEM Program. The annexes of this M&V Guide contain additional guidance.

33 If exceptions to this M&V Guide are sought, or clarification is needed, the PA shall be contacted.

34 1.1 Goals and Objectives of Conducting the M&V Process

35 *The goals of conducting the M&V process are to:*

- 36 37 38 39 40 41 1. Develop a deeper program and customer understanding of the relationship between energy uses, operations, and energy consumption at the site.
2. Determine energy and demand savings as information for customer and regulatory reporting purposes.
3. Enable the customer to manage all or the majority of the M&V process elements that support their energy management business practices.

42 *The objectives of conducting the M&V process are to:*

- 43 44 45 46 47 48 49 50 51 52 1. Characterize the energy consumption, energy uses, and relevant variables of the site.
2. Develop a plan to collect energy data.
3. If possible, develop and use energy consumption models for each type of energy consumed within the M&V boundaries.
4. Quantify energy savings for implemented energy performance improvement actions (EPIA) listed on the Opportunity Register.
5. Calculate energy savings realized during a defined Reporting Period.
6. Prepare documentation for reporting to the sponsoring PA and CPUC.
7. Teach elements of the M&V process to the customer as part of their energy management business practice development.

53 1.2 Terminology

54 The terminology used in this M&V Guide is consistent with the international standard ISO 50001:2018. In some cases, the terminology listed in [Annex A - Terminology](#), of this M&V Guide provides commonly understood terms along with ISO 50001 references.

57 The concepts of energy performance and energy performance improvement are critical to the M&V process:

- 59 60 1. Energy performance can be thought of as a snap shot in time of how much energy is being consumed or efficient the use of energy is.
- 61 62 2. Energy performance improvement is related to a quantifiable change in the amount of energy consumed between two time periods during which EPIAs may be implemented.

1. Overview

63 An indefinite number of methods can be used to determine and report energy performance improvement. This M&V Guide uses estimated energy savings as an indicator of energy performance improvement. Customers may use the M&V process to develop other energy performance improvement indicators such as changes in energy intensity and energy efficiency in addition to estimations of energy savings.

68 1.3 Methods of Determining Energy Savings

69 *This M&V Guide details two methods to determine energy savings. The methods are based upon:*

- 70 1. One or more energy consumption adjustment models developed for each type of energy
71 consumed within the M&V boundaries (commonly referred to as a top-down approach).
- 72 2. The aggregation of energy savings calculated for individual EPIAs implemented during the
73 Reporting Period (commonly referred to as a bottom-up approach).

74 Both methods of determining energy savings are detailed in this M&V Guide.

75 Both methods provide value to the program and the customer but the meaning and context of resulting energy savings values will differ and needs to be contextualized appropriately. The two methods
76 are foundationally different and reconciliation of energy savings values calculated from use of the two
77 different methods will result in misleading conclusions and should not be conducted as part of a PA
78 sponsored SEM program.

80 1.3.1 Energy Consumption Adjustment Models

81 The preferred method to calculate energy savings and track energy performance over time is to develop
82 one or more energy consumption adjustment models for each type of energy consumed within the M&V
83 boundaries. The development and use of energy consumption adjustment models serves two primary
84 purposes:

**Informative tool for
customers to take action with**

**Making energy savings
values meaningful.**

Energy consumption adjustment models developed to normalize energy consumption for relevant variables are tools that provide customers with information about the relationship of energy consumption, energy use, and operations. It is important that the customer work closely with the implementer to understand how energy consumption adjustment models are developed, can be used to track energy performance, and are used by the program to calculate energy savings.

Energy savings are calculated by comparing the energy consumption of one time period to the energy consumption of another. Because variables that affect energy consumption are ever changing, the operational and external conditions of these time periods do not inherently reflect one another. By adjusting, via a regression model, the energy consumption of one of the two time periods such that the operational and external conditions are comparable, calculated energy savings values depict an accurate representation of the effect implemented EPIA and other actions have on energy consumption.

85 Both purposes for developing energy consumption adjustment models need to be equally considered
86 throughout the M&V process.

1. Overview

87 In some instances, energy consumption adjustment models for each type of energy cannot be created
 88 based upon the full M&V boundary (typically the site boundary). In these cases, multiple energy con-
 89 sumption adjustment models may be made so long as the boundaries of each model do not overlap
 90 with one another and fit within the larger M&V boundary. When multiple energy consumption adjust-
 91 ment models are developed, they typically focus on key processes, systems, and/or equipment. The crea-
 92 tion of multiple models is not a requirement of this M&V Guide but is an option. The development of
 93 multiple models incurs additional effort and cost, though the customer may find greater value in using
 94 multiple models which, individually, more meaningfully relate to site operations than one overall site-wi-
 95 de model might.

96 Ideally M&V Boundary Energy Savings will be determined with one or more energy consumption adjust-
 97 ment models, though an M&V boundary smaller than the site boundary may be used. While the deter-
 98 mination of energy savings with an energy consumption adjustment model does not rely on the calcu-
 99 lation of energy savings of individual EPIAs, the energy savings of individual energy efficiency projects
 100 may be used in a limited capacity to provide confidence in top-down based Site-wide Projected Energy
 101 Savings but is not a requirement of this M&V Guide.

102 1.3.2 Aggregation of Energy Savings from Individual EPIA

103 If, for a given energy type, energy consumption adjustment models are not created or used to calculate
 104 energy savings, a bottom-up approach of determining energy savings by aggregating energy savings
 105 from select individual EPIAs may be conducted. Use of aggregated energy savings from individual imple-
 106 mented EPIAs will most likely not capture the total energy savings resulting from behavioral, retro-com-
 107 missioning, and operations (BRO) activities and other EPIAs with smaller energy savings potential.

108 1.4 Avoided Energy Consumption and Annualized Energy Savings

109 M&V Boundary Energy Savings can be calculated from either energy consumption adjustment models
 110 (top-down approach) or aggregation of energy savings from individual EPIAs (bottom-up approach) on
 111 an Avoided Energy Consumption or annualized basis.

112 The CPUC developed NMEC Rulebook defines Avoided Energy Use (in this M&V Guide referred to as Avo-
 113 ded Energy Consumption) as:

114 "...the amount of energy (or peak demand) that was not consumed or realized as a re-
 115 sult of the energy efficiency project or program intervention. Avoided energy use is the
 116 difference between actual energy consumption in the "reporting period" and the con-
 117 sumption that is forecast for the same period using the "baseline energy consump-
 118 tion model," and where the baseline energy consumption model use is adjusted to re-
 119 flect reporting period conditions. The Avoided Energy Use approach is used as the
 120 basis of customer incentive calculations and embedded M&V reporting of savings."

121 Energy savings represented as Avoided Energy Consumption represent the amount of energy savings
 122 realized during the Reporting Period. EPIAs and other energy saving actions may be implemented at
 123 any time during the Reporting Period. This means that energy savings activities implemented towards
 124 the end of the Reporting Period will not have a full 12 months of energy savings reflected in the reported
 125 Avoided Energy Consumption value. Many SEM programs report Avoided Energy Consumption energy
 126 savings.

127 Annualized energy savings are calculated to reflect a full 12 months of energy savings that will be rea-
 128 lized after implementation of one or more EPIAs. Many custom capital and deemed energy efficiency
 129 programs report annualized energy savings.

1. Overview

130 Version 1.0 of this M&V Guide did not specify if energy savings should be reported on an Avoided Energy
 131 Consumption or annualized basis. In many cases top-down based energy savings were being reported
 132 on an Avoided Energy Consumption basis while bottom-up energy savings were being reported on an
 133 annualized basis.

134 In an effort to report SEM energy savings consistently within and between PA territories, with other PA
 135 energy efficiency programs, and at the request of the CPUC evaluator, version 2.0 of this M&V Guide
 136 included a process for annualizing top-down based energy savings and required reporting all energy sa-
 137 vings on an annualized basis. The annualized process was adapted from one implemented by the Ener-
 138 gy Trust of Oregon Industrial SEM program. Feedback after two years of use of this annualization process
 139 indicated the process of annualizing energy savings could be introducing unintended complications
 140 into reported values and was causing confusion when discussed with customers.

141 Based upon feedback from multiple stakeholders including PA staff, PA implementation contractors,
 142 CPUC staff, and CPUC evaluation contractors, and considering the recommendations made in the CPUC
 143 SEM evaluation report¹ and by a PA led M&V working group, this M&V Guide has been updated to no lon-
 144 ger require annualization of top-down based energy savings. Annualization of top-down based energy
 145 savings may be performed with PA authorization only in the case when an energy consumption adjust-
 146 ment model is being retired or a customer will not be participating in the SEM program after the current
 147 Reporting Period.

148 The CPUC SEM evaluation report recommended that consistency in reporting energy savings be prioriti-
 149 zed regardless of the method of determining energy savings. To ensure consistency in reporting energy
 150 savings all SEM energy savings shall by default be reported on an Avoided Energy Consumption basis
 151 regardless of being determined on a top-down and bottom-up basis.

152 For bottom-up energy savings this means that the annualized energy savings value for individual EPIAs
 153 shall be pro-rated for the Reporting Period based upon EPIA implementation date. To ensure a full an-
 154 nualization of EPIA energy savings is reported, the balance of the annualized energy savings for each
 155 EPIA shall be reported in the next Reporting Period regardless of whether a top-down or bottom-up
 156 approach is used for that type of energy in the next Reporting Period. If the customer does not end up
 157 participating in the SEM program in the subsequent year the balance of the annualized energy savings
 158 for the EPIA may still be claimed in the subsequent year with no associated cost of program implemen-
 159 tation. Persistence of the EPIA in the subsequent Reporting Period shall be documented by confirming
 160 with the customer the EPIA is still installed and operational.

161 The only times at which energy savings for a given type of energy are allowed to be annualized shall be
 162 when an energy consumption adjustment model will be retired or if the customer is not intending to
 163 participate in the SEM program after the current Reporting Period. If either of these conditions is met
 164 and the PA agrees, then energy savings for that type of energy for that customer shall be reported on an
 165 annualized basis. If an energy consumption adjustment model is retired during the current Reporting
 166 Period and was used to claim Avoided Energy Consumption based energy savings in the prior Repor-
 167 ting Period, the unrealized energy savings between the claimed Avoided Energy Consumption energy
 168 savings of the previous Reporting Period and what would have been claimed in the previous Reporting
 169 period if Annualized Energy Savings were claimed may be claimed in the current reporting period in
 170 addition to new savings from a bottom-up approach if one is being used in the current Reporting Period.

171 See Section 3.13 for more information on calculating Avoided Energy Consumption and annualized ener-
 172 gy savings with energy consumption adjustment models.

173 See Section 3.12.2 for more information on calculating Avoided Energy Consumption and annualized
 174 energy savings for EPIAs.

175 See Section 4 for more information on reporting energy savings to the CPUC.

¹SBW Consulting Inc., Group D – D11.03 2018-19 Industrial Strategic Energy Management (SEM) Impact Evaluation, January 2022

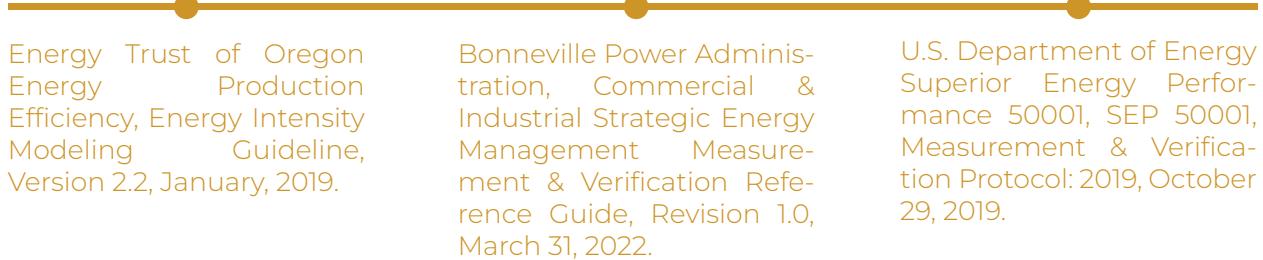
1. Overview

1.5 Customer Learning and Leading the M&V Process

177 The ability of the customer to conduct elements of the M&V process independently after completing the
178 PA sponsored SEM program is important to the viability of the customer's energy management system.
179 Over the span of the SEM Program, it is expected, but not required, that the customer learn from the im-
180 plementer how to independently manage the elements of the M&V processes that support their energy
181 management business practices with limited assistance.

182 A distinction between the customer being able to manage the M&V process in general and being able
183 to conduct activities to meet specific requirements of this M&V Guide should be made. Outside of a PA
184 sponsored SEM program, the requirements of this M&V Guide become suggestions and the customer
185 may deviate from them as desired to meet their individual needs. As an example, the benefits of de-
186 veloping and using energy consumption adjustment models may not outweigh the complexity and
187 effort needed to establish energy performance improvement in this way. The customer may opt to use
188 alternative and simpler energy performance indicators but would do so knowing the advantages and
189 disadvantages of using these indicators.

190 The process of M&V documented in this M&V Guide will assist the customer beyond PA sponsored SEM
191 program participation and the customer should focus on learning to manage M&V process activities
192 that would be of value to them beyond the conclusion of the SEM Program Cycle. The portions of the
193 M&V Guide that pertain to regulatory reporting and other PA and CPUC policies and requirements have
194 limited value to the customer beyond the SEM Program and would likely need SEM Program support.


195 Beyond participation in a PA sponsored SEM program, the customer should review which requirements
196 of this M&V Guide should be altered to best fit their own needs as part of their energy management bu-
197 siness practices.

1. Overview

1.6 Relationship to Other M&V Guides

199 This version of the M&V Guide, is an update to version 3.02 published July 06, 2022. This revision incorporates feedback from PA staff, SEM implementation contractors, CPUC staff, and CPUC evaluation contractors. Recommendations from the first CPUC evaluation report of the California SEM programs, 2018-2019 Industrial Strategic Energy Management (SEM) Impact Evaluation, published January 31, 2022, and PA sponsored M&V working groups have been considered and appropriately incorporated.

204 Similar to previous versions of this M&V Guide, the key principles and specifications are based upon well-established SEM M&V practices and documents. Much of the technical content in this guide has been 205 adapted from three SEM M&V documents:

This M&V Guide is also consistent with the principles and compatible with:

ISO 50015:2014 – Mea-
surement and verifica-
tion of energy perfor-
mance of organizations
– General principles and
guidance.

ISO 50047:2016 –
Determination of
energy savings in
organizations.

In addition, efforts were taken to ensure consistency in technical direction with:

ASHRAE Guideline
14:2014 – Measure-
ment of Energy,
Demand and Water
Savings.

International Perfor-
mance Measurement
and Verification
Protocol – Option C,
January 2012.

1.7 Relationship to the NMEC Rulebook

207 The CPUC developed Rulebook for Programs and Projects Based on Normalized Meter Energy Consumption (NMEC Rulebook) summarizes requirements for NMEC programs where energy savings are 208 based on normalized metered energy consumption (NMEC). The purpose of the NMEC Rulebook is to 209 provide a list of the directives and policies that have been established by the CPUC for the 210 administration and implementation of such programs.

211 This M&V Guide and the NMEC Rulebook are based upon the common concept of determining energy 212 savings on a site-wide, existing baseline, utility meter-based approach. While the concept is common, 213 the CPUC has stated that the NMEC Rulebook and this M&V Guide are separate and not interchangeable. 214 As stated in the January 7, 2020 version 2.0 of the NMEC Rulebook, “NMEC is not permissible for 215 industrial operations and maintenance (O&M) or behavior, retro commissioning, and operations (BROs)-type 216 projects except as a component of Commission defined Strategic Energy Management Programs.” 217 The NMEC Rulebook continues that in Decision 18-01-004, “We clarify that this SEM program is the only 218 program in which NMEC currently may be used to assess savings in industrial sites from operations and 219 maintenance (O&M) or behavior, retro commissioning, and operations (BROs)-type activities.”

220 The separation of the NMEC Rulebook and this M&V Guide reflects the CPUC understanding that while 221 the meter-based approach of the two documents contains many similarities, the NMEC Rulebook is 222 oriented towards NMEC programs’ shorter duration than the six year-long SEM program.

223 When reasonable, consistency between the NMEC Rulebook and this M&V Guide has been considered.

2 Planning	12	PLANNING
2.1 SEM Time Periods, Tools, and Reviews and Reports	12	PLANNING
2.1.1 SEM Time Periods	12	PLANNING
2.1.2 Tools	14	PLANNING
2.1.3 Reviews and Reports	15	PLANNING
2.2 Characterizing the Site	16	PLANNING
2.2.1 Site Boundaries	16	PLANNING
2.2.2 Energy Types	17	PLANNING
2.2.3 Energy Uses	18	PLANNING
2.2.4 Energy Meters	18	PLANNING
2.2.5 Energy Flows	19	PLANNING
2.2.6 Energy Map	20	PLANNING
2.2.7 Documenting Site Boundaries	20	PLANNING
2.3 Relevant Variables	20	PLANNING
2.3.1 Identifying Potential Relevant Variables	21	PLANNING
2.3.2 Identifying Data Sources	23	PLANNING
2.3.3 Review of Relevant Variables	24	PLANNING
2.4 Planning for Energy Data Collection	24	PLANNING
2.4.1 Energy Data Collection Plan	24	PLANNING
2.4.2 Energy Data and Performance Tracking Tool	26	PLANNING
2.4.3 The Opportunity Register	27	PLANNING
2.5 Selecting the M&V Boundaries and Method	28	PLANNING
2.5.1 Assessing the Feasibility of Site-wide M&V		page 11-35
Boundaries	29	PLANNING
2.5.2 Assessing the Feasibility of System-level M&V		PLANNING
Boundaries	30	PLANNING
2.5.3 Assessing the Feasibility of EPIA M&V		PLANNING
Boundaries	30	PLANNING
2.5.4 Updating the Site Characterization with M&V		PLANNING
Boundaries	32	PLANNING
2.5.5 Updating the Data Collection Plan with M&V		PLANNING
Boundaries	32	PLANNING
2.5.6 Updating M&V Boundaries	32	PLANNING
2.6 Collecting Data and Assessing Data Quality	32	PLANNING
2.6.1 Collecting Data	33	PLANNING
2.6.2 Reviewing for Data Outliers and Missing		PLANNING
Data Points	33	PLANNING
2.6.3 Adjusting Data for Time-Series Offsets	35	PLANNING

2. Planning

226 2 Planning

227 2.1 SEM Time Periods, Tools, and Reviews and Reports

228 2.1.1 SEM Time Periods

229 The M&V process described in this document is assumed to be conducted on an annual basis. Specific
 230 time periods listed below are established within and outside of the annual process. Use of these time
 231 periods helps define how energy performance is monitored and energy performance improvement is
 232 determined. These time periods may be changed as the M&V process is conducted.

233 *The time periods are defined terms (see Annex A - Terminology). Requirements for use are provided
 234 here:*

235 2.1.1 SEM Program Cycle

236 A consecutive 24-month time period during which the customer engages in the SEM program. As
 237 part of a well-established energy management system, energy consumption data and relevant variable
 238 data shall be collected continuously during the SEM Program Cycle regardless of energy savings
 239 determination approach that will be used.

240 2.1.2 Reporting Period

241 Time period for which energy saving are calculated. All portions of the SEM Program Cycle shall be
 242 encompassed by one or more Reporting Periods.

243 The PA sponsoring the SEM program shall be responsible for establishing the duration of the Reporting
 244 Period.

245 As part of a PA sponsored SEM Program Cycle, the default Reporting Period is one year starting at the
 246 beginning of the SEM Program Cycle. This assumption would allow for two consecutive Reporting
 247 Periods in each SEM Program Cycle. The PA sponsoring the SEM program may prescribe different
 248 Reporting Periods.

249 The first Reporting Period of a SEM Program Cycle is labeled as Reporting Period 1 whether or not
 250 energy consumption adjustment models are used across multiple SEM Program Cycles.

251 2.1.3 Baseline Period

252 A consecutive 12 or 24-month period that precedes the SEM Program Cycle and consists of a time
 253 period that is representative of normal operations within the site. During the Baseline Period energy
 254 consumption and relevant variable data are collected to create forecast energy consumption adjustment
 255 models and serves as the comparative basis by which improvements in energy performance
 256 are calculated against.

2. Planning

257 The Baseline Period shall be 12 or 24 consecutive months with the following considerations:

258 ■ **12 months:** Generally appropriate for sites with weather-dependent and seasonal operations.
259 The 12-month period could be a calendar year, fiscal year, or other designated 12 consecutive
260 months.

261 ■ **24 months:** Generally appropriate for highly seasonal models or models with monthly
262 intervals, a 24-month Baseline Period may be optimal.

263 Alternative Baseline Period lengths may be used with PA approval. The rational for the alternative
264 length shall be documented.

265 When choosing a Baseline Period length consider the reasonable ability to identify the implemen-
266 tation date and energy savings of EPIA implemented or non-routine events that may have occurred
267 during the Baseline Period.

268 Ideally, the Baseline Period will end immediately prior to the start of the SEM Program Cycle. How-
269 ever, the Baseline Period shall not end more than three months prior to or after the beginning of
270 the Reporting Period for which an energy consumption adjustment model is being developed. The
271 three-month allowance provides for adjustments to the Baseline Period to account for abnormal ope-
272 rations, implementation of EPIAs, and non-routine events not expected to be observed again. The
273 Baseline Period shall be updated as needed based upon the requirements of this M&V Guide.

274 **2.1.1.4 Annualization Period**

275 If energy savings are being determined with the use of energy consumption adjustment models and
276 annualization of energy savings is approved by the PA, an Annualization Period shall be established
277 for which the annualization of energy savings can be calculated following the requirements of this
278 M&V Guide.

279 **2.1.1.5 Reporting the Current SEM Program Cycle**

280 In any report or review, when referring to the current SEM Program Cycle on reports or as part of
281 reviews the following full statement designed to document the customer's current and past SEM
282 program participation shall be used: SEM Program Cycle [#] Reporting Period [#], SEM program par-
283 ticipation year [#].

284 Assuming one year-long Reporting Periods the full listing of potential statements designating the
285 current SEM Program Cycles are:

286 ■ Core SEM Cycle 1, Reporting Period 1, SEM Program Year 1.
287 ■ Core SEM Cycle 1, Reporting Period 2, SEM Program Year 2.
288 ■ Core SEM Cycle 2, Reporting Period 1, SEM Program Year 3.
289 ■ Core SEM Cycle 2, Reporting Period 2, SEM Program Year 4.
290 ■ Core SEM Cycle 3, Reporting Period 1, SEM Program Year 5.
291 ■ Core SEM Cycle 3, Reporting Period 2, SEM Program Year 6.

292 Use of an abbreviated version of the full listing of potential statements designating the current SEM
293 Program Cycles can be used with the format: "SEM Program Year X" where X is the current program
294 year.

295 Graduate Pathway designations continue based upon the above format:

296 ■ Graduate Pathway Cycle 4, Reporting Period 1, SEM Program Year 7.
297 ■ Graduate Pathway Cycle 4, Reporting Period 2, SEM Program Year 8.

2. Planning

2.1.2 Tools

2.1.2.1 Energy Map

2.1.2.2 Energy Data Collection Plan

2.1.2.3 Energy Data and Performance Tracking Tool

2.1.2.4 Energy Consumption Adjustment Model Development Tool

2.1.2.5 Opportunity Register

2.1.2.6 Energy Management Assessment

2.1.2.1 Energy Map

300 Defined by the Consortium for Energy Efficiency, an Energy Map is, "a breakdown or map of energy
 301 end uses and costs across the company. This should include all significant end use systems, as well
 302 as other relevant variables of energy consumption such as production, weather, and product mix."²

303 The Energy Map is intended to identify and show where and how much energy is used within a
 304 site, create awareness of site-wide energy use, and help prioritize the identification of energy-saving
 305 opportunities based on areas of high energy use in a site.

306 An Energy Map Tool, likely Excel-based, that helps the customer build a basic Energy Map, and option-
 307 ally a detailed Energy Map, shall be provided to customers to help them organize and understand
 308 energy use at their site by area or system.

2.1.2.2 Energy Data Collection Plan

310 Energy Data and Performance Tracking Tools shall be designed and used to capture energy con-
 311 sumption and relevant variable data for each M&V boundary. Data captured by The Energy Data and
 312 Performance Tracking Tool shall also be used to track energy performance as determined by energy
 313 consumption adjustment models over time.

2.1.2.3 Energy Data and Performance Tracking Tool

315 The Energy Data and Performance Tracking Tool shall be designed and used to capture energy con-
 316 sumption and relevant variable data. Data captured by The Energy Data and Performance Tracking
 317 Tool shall also be used to track energy performance as determined by energy consumption adjust-
 318 ment models over time.

319 To ensure the customer can access their own data and continue to record and track data after an SEM
 320 Program Cycle, the implementer shall provide and ensure the customer can record and track data
 321 in a no-cost Energy Data and Performance Tracking Tool. An Excel based tool is likely to be provided
 322 as the underlying software is typically available to the customer. Other no-cost tools are acceptable
 323 so long as the customer can maintain access to the tools at no-cost beyond the SEM Program Cycle.

324 If the customer would rather use their own data collection tool, the implementer shall ensure it is
 325 configured to track all data identified in the Energy Data Collection Plan and data will be exportable
 326 to provide to the sponsoring PA if needed.

327 In addition to the no cost tool, and with approval from the sponsoring PA, implementers are permit-
 328 ted to make available to customers proprietary/for fee software tools to serve as the Energy Data and
 329 Performance Tracking Tool so long as data contained with these tools can be extracted and used to
 330 populate the no-cost Energy Data and Performance Tracking Tool at the conclusion of the SEM Pro-
 331 gram Cycle.

2.1.2.4 Energy Consumption Adjustment Model Development Tool

333 The implementer shall provide and show the customer a no-cost Energy Consumption Adjustment
 334 Model Development Tool. As part of a PA sponsored SEM program there are no specific software

²Consortium for Energy Efficiency (CEE), CEE Strategic Energy Management Minimum Elements, February 2014

2. Planning

335 requirements for building energy consumption adjustment models so long as the resulting model
 336 meets all validity requirements of this M&V Guide. Consider the software's flexibility and its ability to
 337 iterate quickly on relevant variable combinations. The customer does not have to be able to demon-
 338 strate an ability to use the tool but shall be shown the tool and its use described such that if the custo-
 339 mer desires to use the no-cost beyond the PA sponsored SEM program they can do so.

340 In addition to the no-cost tool, and with approval from the sponsoring PA, implementers are per-
 341 mitted to make available to customers proprietary/for fee software tools to serve as the Energy Consump-
 342 tion Adjustment Model Development Tool so long as data contained with these tools can be extracted
 343 and used to populate the no-cost Energy Consumption Adjustment Model Development Tool at the
 344 conclusion of the SEM Program Cycle.

345 *2.1.2.5 Opportunity Register*

346 The Opportunity Register helps the customer prioritize and track opportunities to improve energy
 347 performance and their EnMS. The Opportunity Register is also an important piece of evidence of
 348 program influence as part of the CPUC's evaluation of the SEM program. The Opportunity Register is
 349 required to include data that will directly aid the customer as well as the CPUC evaluator.

350 The implementer shall provide and ensure the customer can record and track data in a no-cost
 351 Opportunity Register. An Excel based tool is likely to be provided as the underlying software is typi-
 352 cally available to customers. Other no-cost tools are acceptable so long as the customer can maintain
 353 access to the tools at no-cost beyond the PA sponsored SEM Program Cycle.

354 In addition to the no-cost tool, and with approval from the sponsoring PA, implementers are per-
 355 mitted to make available to customers proprietary/for fee software tools to serve as the Opportunity
 356 Register so long as data contained with these tools can be extracted and used to populate the no-
 357 cost Opportunity Register at the conclusion of the SEM Program Cycle or at the request of the PA or
 358 customer.

359 *2.1.2.6 Energy Management Assessment*

360 The Energy Management Assessment (EMA) process described in the Design Guide will result in a
 361 quantitative output metric of EnMS development. This metric will be reported as part of the Mid-Year
 362 Review and SEM Reporting Period Performance Report. The requirements pertaining to the specific
 363 EMA and reporting of results detailed in the Design Guide shall be followed.

364 If the EMA question set required for use by the Design Guide is put into a proprietary/for fee tool, the
 365 underlaying question/statement set shall be made available to the customer at no cost and in a for-
 366 mat of the customer's choosing.

367 2.1.3 Reviews and Reports

2.1.3.1 Mid-Year Review

2.1.3.2 SEM Reporting Period Performance Report

368 *2.1.3.1 Mid-Year Review*

369 The Mid-Year Review is an annual review of the M&V process conducted between the implementer
 370 and PA sponsoring the SEM program. The SEM program is a long duration engagement with inte-
 371 grated business practice development, EPIA implementation, and M&V activities, the PA has interest
 372 in ensuring the program is "on track" prior to annual submission of energy savings and future CPUC
 373 evaluation. An annual Mid-Year Review of the M&V process and key SEM program design components

2. Planning

374 shall be conducted between the implementer and PA sponsoring the SEM program to ensure the
 375 program deliverables, including M&V deliverables, are being met prior to year-end reporting. The Mid-
 376 Year Review is not designed to be part of the CPUC evaluation process.

377 **2.1.3.2 SEM Reporting Period Performance Report**

378 The SEM Reporting Period Performance Report is a living documentation of the activities and ou-
 379 tputs of the M&V process. The SEM Reporting Period Performance Report is intended to be for the PA
 380 sponsoring the SEM program but may be of use to the customer as a record of the M&V process that
 381 can be used in subsequent years.

382 **2.2 Characterizing the Site**

383 M&V is conducted within a defined set of boundaries for a given site for which the energy consumption
 384 is managed by a customer of the PA sponsoring the SEM program. The process of establishing M&V
 385 boundaries is based upon developing an understanding of the:

386 ■ Types of energy consumed,
 387 ■ Energy uses and their operation,
 388 ■ Energy meters, and
 389 ■ Energy flows at the site

390 In many cases, establishing M&V boundaries may be relatively straightforward depending on the nature
 391 of the site and what information is already available. If the M&V process is being conducted as part of a PA
 392 sponsored SEM program, the M&V boundaries most likely will be the same as those used to define the
 393 site as part of the SEM program. M&V boundaries should align with the location of energy meters and
 394 energy uses such as production lines, process systems, buildings, and other equipment.

395 Depending on the site complexity, interest of the customer, and challenges creating energy consump-
 396 tion adjustment models for a site-wide M&V boundary, smaller M&V boundaries may be needed or more
 397 useful in understanding energy performance improvement.

398 Review of the M&V boundaries should be conducted regularly. The process of updating M&V boundaries
 399 is based upon detailed knowledge of energy consumption, energy use, and general operations within
 400 the site. This is information the customer should have intimate knowledge of.

401 This review could be a simple review to confirm what, if any, changes to the types of energy consumed,
 402 energy uses, energy meters, operations, and potentially relevant variables have occurred at the site and
 403 need to be reflected. If changes to the site, including the addition or removal of on-site generation and
 404 site expansions, have occurred an assessment should be made to understand how they may affect the
 405 M&V boundaries and other parts of the M&V process.

406 Subsequent parts of the M&V process may reveal a need to revisit M&V boundaries.

407 The process of first establishing and then reviewing M&V boundaries shall be conducted annually.

408 **2.2.1 Site Boundaries**

409 **2.2.1.1 Defining the Customer**

410 The customer is an organization enrolled in the PA sponsored SEM program and has control and
 411 responsibility for energy consumption as measured by one or more meters across one or more sites.
 412 Customers can choose to enroll sites simultaneously or at different times based on their organiza-
 413 tional structure and management needs.

2. Planning

414

2.2.1.2 Defining the Site

415
416
417
418

A site is typically defined by the neighboring proximity of energy-consuming buildings, assets, or facilities, usually within a shared boundary such as a fence line and may have one or more associated street addresses. A site can encompass multiple buildings or assets and include multiple utility energy meters.

419
420
421

The process of defining a site should align with the customer's operational understanding. Any deviations from the general definition must be discussed between the customer and the SEM program implementer, with final approval from the Program Administrator (PA).

422

Examples:

423
424
425
426
427

- **School District Example:** A school district with one high school, two middle schools, and four elementary schools not located near each other would typically represent seven distinct sites. However, if one middle school is adjacent to an elementary school, the district may consider these two schools a single site if operationally beneficial. Such cases require discussion with the implementer and PA approval.

428
429
430
431
432

- **Healthcare Provider Example:** A healthcare provider operating a hospital complex at one address and an outpatient building located a block away, separated by other properties, must discuss with the implementer whether operational integration into one site makes sense for energy management purposes. Combining these into one site boundary requires PA approval

433

2.2.2 Energy Types

434
435
436
437

The scope of the M&V process shall include all energy types, which are delivered to, consumed within, and delivered away from the M&V boundaries. The originating source (e.g., utility, on-site generation, other organization) of the energy should be noted but does not prohibit any energy types from being included in the M&V process.

438
439
440
441
442
443

In some instances, to aid energy consumption adjustment model development it may be useful to remove energy conversion equipment from the M&V boundaries such that the energy the equipment produces is accounted for rather than the energy that enters it (e.g., account for the steam produced by a boiler rather than the biogas that feeds it, account for the electricity after the inverter that is generated by an on-site PV panel). [See Annex B - Special Cases in Energy Accounting](#) for examples of how to establish the delivered energy value for various M&V boundary situations.

444
445
446

Based upon the working understanding of the M&V boundaries a list of all energy types that the customer has authority of and that are delivered to, consumed within, and delivered away from the boundaries shall be created.

447

2.2.2.1 Quantifying Energy Consumption

448
449

For each energy type included in the M&V process, site-wide energy consumption shall be equal to or greater than zero.

450
451
452

If site-wide energy consumption for a given type of energy is calculated to be a negative value, it shall be accounted for as zero. In such cases, care shall be taken to ensure energy export and energy product are correctly accounted for.

453

2.2.2.1.1 On-site Energy Generation and Conversion

454
455

M&V boundaries are considered three-dimensional; thus, energy accounting shall include energy that enters the M&V boundaries from the sky (e.g., rooftop solar PV) and ground (e.g. on-site natural

2. Planning

456 gas extraction) if consumed at the site in the form of an energy type for which energy savings are
 457 being determined.

458 The establishment of M&V boundaries shall consider on-site energy conversion equipment such as
 459 a Combined Heat and Power (CHP) system, natural gas fueled gas turbine engine, or biogas fueled
 460 boiler.

461 This consideration shall include analysis of how energy converted from one type to another (e.g., natural
 462 gas to steam and electricity) are ultimately consumed by energy uses within the M&V boundary
 463 and the consideration for how those energy types will be used in the future development of energy
 464 consumption adjustment models.

465 2.2.2.1.2 *Types of Energy with Relatively Insignificant Consumption*

466 A given type of energy may be omitted from the M&V process only if it accounts for 5.0% or less of the
 467 site's total prior year annual delivered energy.

468 In calculating the percent of total consumption represented by an omitted energy type, both the
 469 energy consumption of the omitted energy type and total site energy consumption shall be calculated
 470 on a delivered energy basis.

471 The determination to omit energy types shall be based on measured data or calculated analysis and
 472 documented in the SEM Reporting Period Performance Report.

473 **EXAMPLE:** A site that produces and freezes large quantities of processed foods uses propane
 474 for two forklifts. The annual energy consumption of propane is calculated to be 2.5% of site
 475 total energy consumption. As a result, propane is omitted from the M&V process.

476 Justification for the omission of a given type of energy shall be documented.

477 2.2.3 Energy Uses

478 M&V boundaries shall be defined to encompass important energy uses such as production lines, process
 479 systems, and buildings as appropriate.

480 Uses of energy that consume a significant quantity of energy or are important to the operations at the
 481 site shall be identified.

482 If as part of the EnMS, significant energy use (SEU) selection criteria was developed, this criteria shall be
 483 used to identify SEUs.

484 2.2.4 Energy Meters

485 Data regarding the quantity of energy delivered into or away from the M&V boundaries (delivered to the
 486 site, delivered away as energy export, delivered away as energy product, or feedstock) may be available
 487 directly from energy meters (utility or submeters) or taken from a supplier invoice. Based upon the location
 488 of energy meters the M&V boundaries may need to be adjusted.

489 Use of existing utility energy meters may be sufficient to quantify the delivered energy.

2. Planning

490 If utility energy meters serve buildings, equipment, processes or other energy using systems outside the M&V boundaries (nominally outside the SEM program boundaries if the customer is participating in a PA sponsored SEM program) for which energy performance and energy savings are being determined, submeters shall be used to net out the energy consumption of these energy uses.

494 All utility and other relevant energy meters for all types of energy delivered to or away from the M&V boundaries as well as energy submeters shall be documented.

496 For each energy meter, the meter serial number, utility account number, or other unique identifiers shall be documented. The meter units and metering interval shall be documented. The major processes monitored by each energy meter shall be documented.

499 2.2.5 Energy Flows

500 The quantity of a particular type of energy that is consumed within the M&V boundaries is defined by the net energy flow of that energy type across the M&V boundaries.

502 Process flow diagrams, piping and instrumentation diagrams, and value stream maps can be helpful in creating diagram(s) that show energy flows. Indicate the flow of each type of energy on this diagram. The energy flows trace the “path” energy takes from the point it is delivered to the M&V boundaries and to the energy end uses. If applicable, the energy flows will include the “path” energy may take into and out of on-site storage, delivered away from the site as an energy product or energy export.

507 The energy content of the energy flows that do not terminate in energy end uses within the M&V boundaries will need to be netted out to correctly establish the amount of delivered energy.

509 The energy flow diagram does not need to include energy units, be to scale, and is an illustrative diagram of the various energy uses and sources within the M&V boundaries.

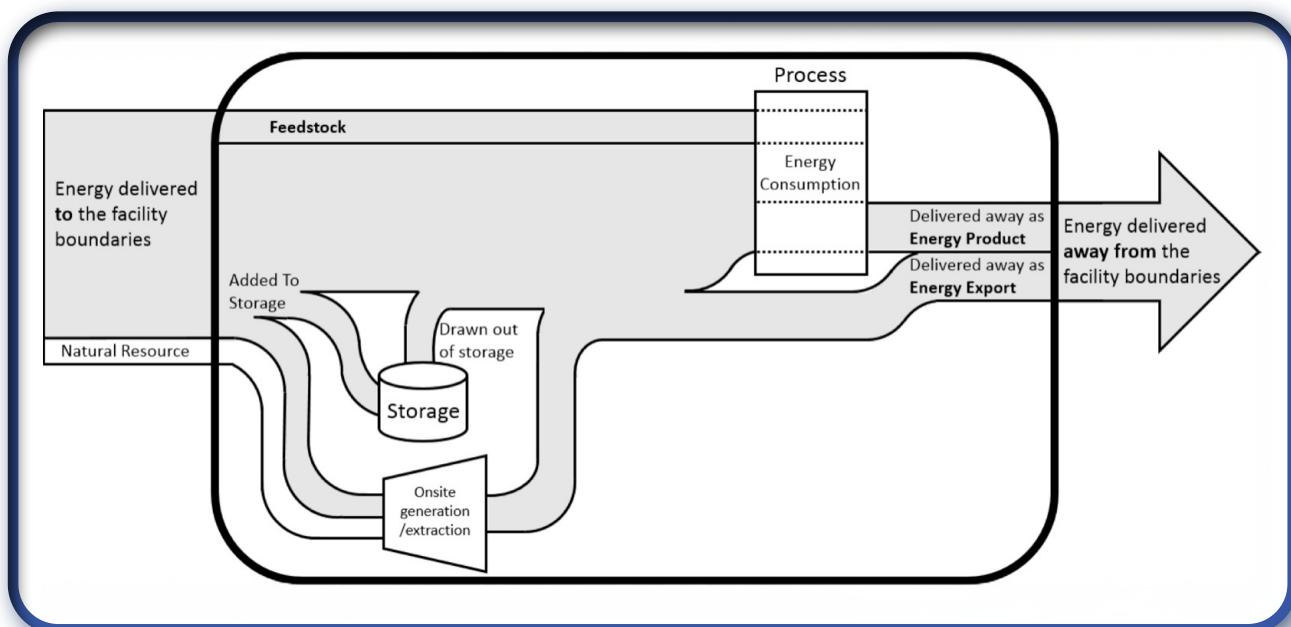
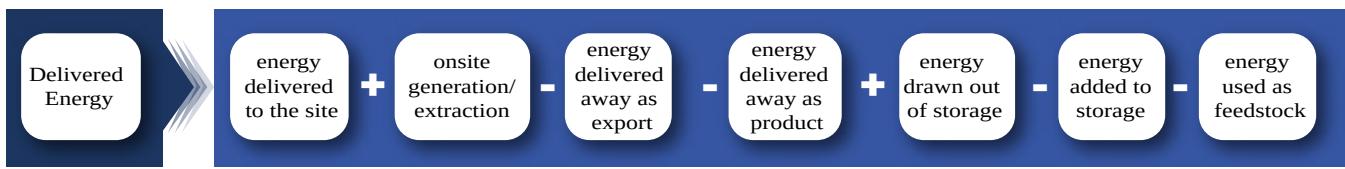



Figure 1: Generic Energy Consumption Accounting Flow Diagram.

2. Planning

511 The below equation describes how to calculate energy consumption. Figure 1 graphically illustrates this
 512 relationship.

513 An energy flow diagram shall be created and reviewed annually with updates made reflecting changes
 514 at the site.

515 Additionally, if energy is used as a feedstock this shall be noted as part of the energy flow.

516 2.2.6 Energy Map

517 An energy map shall be developed through the process of establishing M&V boundaries and reviewed
 518 annually with updates made reflecting changes at the site.

519 The Energy Map shall contain at a minimum a listing of energy uses at the site with importance to the
 520 customer or that have a relatively large consumption of energy. For each energy use listed, the associated
 521 types of energy consumed, rough estimate of energy consumed, and relevant variables possible as-
 522 sociated with the energy use shall be provided. Notation of which energy uses are selected as Significant
 523 Energy Uses (SEUs) and the criteria for selecting them shall be made on the Energy Map.

524 2.2.7 Documenting Site Boundaries

525 Documentation of site boundaries shall include a description and one or more clearly marked line
 526 drawings or aerial images of the site.

527 The line drawing(s) or aerial image(s) shall include demarcation of buildings and major equipment and
 528 processes, energy meters, and energy flows within the site boundaries.

529 Special note shall be made regarding the location and interrelationship of energy conversion equipment
 530 (e.g., CHP, on-site generation).

531 2.3 Relevant Variables

532 Relevant variables are quantifiable factors that routinely change and have a major impact on energy
 533 performance, including operational performance, and which directly affect the amount of energy con-
 534 sumed within the M&V boundaries. Relevant variables may or may not be in the control of the customer.

535 **EXAMPLES:** Production quantities, equivalent products, number of batches, heating de-
 536 gree-days, humidity, occupancy, hours worked, number of shifts, customers served, and raw
 537 material characteristics.

538 Relevant variables are used to normalize energy consumption as part of an adjustment model. Relevant
 539 variables can also be used with other methods of tracking energy performance and determining energy
 540 performance improvement.

2. Planning

541 It is important to select a suite of relevant variables that will fully represent the use and consumption of
 542 energy within the M&V boundaries. Equally, it is important to not collect data on variables that have no
 543 bearing on the use and consumption of energy.

544 Sites with complex or diverse operations, for which there may be difficulty creating a single site-wide
 545 energy consumption adjustment model for each type of energy, should consider assessing additional
 546 potentially relevant variables that may be more directly related to a discrete process, building, or other
 547 operation that could be modeled in isolation.

548 Regular simple reviews of relevant variables should be conducted to ensure they are still relevant to the
 549 site's energy consumption.

550 A full review of selected relevant variables may be needed if additional or different energy consumption
 551 adjustment models are to be created or if significant operational changes have occurred at the site.

552 2.3.1 Identifying Potential Relevant Variables

553 *In order to develop robust and meaningful adjustment models, care shall be taken to avoid:*

- 554 ■ Omitting relevant variables that affect energy consumption.
- 555 ■ Including variables that do not directly affect energy consumption.

556 The process of identifying relevant variables shall be conducted regardless of the M&V method used and
 557 before attempting to develop energy consumption adjustment models.

558 A first step in this process is to assess where production data is available relative to energy-intensive
 559 processes. If a significant time offset exists between the energy-intensive process and the measurement
 560 point for a potential relevant variable, a note that a time-shift in interval data is needed to align the pro-
 561 duction data with energy consumption data shall be made.

562 Relevant variables shall be physical quantities, characteristics, or conditions. Financial metrics or metrics
 563 that include a financial component, such as product price or energy costs shall not be considered as re-
 564 levant variables as they lack a physical relationship to energy consumption.

565 *The following variables shall be considered for inclusion as relevant variables:*

- 566 ■ Activity level (e.g., operating hours, operating mode (weekend/weekday), production level,
 567 product mix, and equivalent products, occupancy, etc.).
- 568 ■ Weather (e.g., heating degree-day, cooling degree-day, ambient temperature, and humidity,
 569 etc.).

570 Using engineering judgment, a list of potentially relevant variables that may or may not be included in
 571 the energy consumption adjustment models shall be developed.

572 For each potentially relevant variable included on this list, the energy type and energy use (of those iden-
 573 tified in [Section 2.2](#)) that the relevant variable is suspected to affect shall be indicated.

574 2.3.1.1 Production Metrics

575 For industrial sites, a metric of production is often included as a relevant variable. It is important to un-
 576 derstand how many product types are manufactured in a site and whether there is likely to be a differ-
 577 ence in energy consumption based on operating parameters such as product type, process flow, or
 578 batch size. Site personnel who work closely with energy uses typically have insight into what variables
 579 should be considered. By thinking openly about which variables may affect energy consumption and

2. Planning

580 how those variables relate to one another, the chances of developing a robust energy consumption
 581 adjustment model will be increased.

582 **EXAMPLE:** A site that produces two types of products, one of which is very energy intensive
 583 to produce and the other which is not, may consider including production levels from both
 584 products rather than an aggregated production value.

585 If multiple production variables are available, process flow diagrams and energy maps may be useful
 586 to identify potentially interactive effects and correlations. Using multiple measurement points in the
 587 same process line may not be necessary or beneficial. [See Annex D – Multicollinearity and Autocorre-
 588 lation](#), for more details.

Measurement Points	Pros	Cons
Raw material input	Provides a mechanism for capturing the effects of different types of raw materials.	Fails to provide a mechanism for understanding energy impact of yield/productivity improvements.
In-line metric	Allows for the selection of a production variable at energy-intensive processes, thereby minimizing a time-series shift.	Fails to provide a mechanism for incentivizing the energy impact of yield/productivity improvements downstream, from point of measurement.
End-of-line metric	Provides a mechanism for incentivizing the energy impact of yield/productivity improvements.	May induce a time-series shift for long lead-time processes.
Finished product shipped	Data can be captured via accounting systems.	May not sync with production depending on dwell time in the warehouse.

Table 1- Options for Production Relevant Variables

589 Raw material, in-line production, and finished product metrics each have pros and cons as relevant varia-
 590 bles. An informed decision will take into account factors such as lead time, the desire to account for yield
 591 effects, as well as the prevalence of inventory fluctuations in-process or at the finished-product stage.

592 2.3.1.2 Weather Metric Requirements

593 One or more weather metrics such as outdoor air temperature, wet bulb temperature, heating de-
 594 gree day (HDD), cooling degree day (CDD) and rainfall will often be used in the formation of an energy
 595 consumption adjustment model.

596 Weather data shall be actual weather data from published government sources, such as primary Na-
 597 tional Oceanic and Atmospheric Administration (NOAA) weather stations, the National Climate Data
 598 Center (NCDC) database, or from a calibrated weather meter within close enough proximity to the site
 599 to reflect the weather conditions at the site.

600 If on-site weather station data is to be used it shall be calibrated per the manufacturer's specifications
 601 and confidence established that the station will be available through the SEM program cycle.

602 The customer must be able to access the same data during and after the SEM Program Cycle in order
 603 to be able to update the model themselves upon completion of the SEM Program Cycle.

2. Planning

604 In some cases, weather stations report in coordinated universal time (UTC) time, which means a daily
 605 average is not representative of a 12:00am-11:59pm day in local time. Proper time zone offsets shall be
 606 applied to data before averaging into a daily, weekly, or monthly interval.

607 If being used in the formulation of energy consumption adjustment models that will be used to re-
 608 port energy savings to the CPUC, HDD and CDD shall be calculated based upon at least daily data.

2.3.1.3 *Indicator Variables and other Relevant Variables*

610 Based on the energy map and energy uses, consider which other relevant variables may affect ener-
 611 gy consumption such as raw material properties, operational modes (weekend/weekday) occupancy,
 612 shifts, and hours.

613 Indicator variables can represent tangible changes to operations, sites, and processes. Positively, the
 614 use of an indicator variable can help ensure energy consumption adjustment models are meaning-
 615 fully constructed. Negatively, indicator variables can be developed semi-arbitrarily to ensure a model
 616 can be created regardless of the resulting model being meaningful. Whenever an indicator variable
 617 is used in a model, define whether it is a one-time change or a reoccurring event that will also apply
 618 in the Reporting Period.

619 An indicator variable could be used in conjunction with production data to create an artificial offset for
 620 regular non-production days. In this case as the indicator variables would establish a level of energy
 621 consumption for non-production days on which energy consumption would increase as production
 622 level rise.

623 Indicator variables may be used to represent seasonal changes, energy projects during the Baseline
 624 Period or other changes.

2.3.2 Identifying Data Sources

626 If possible, data sources for each potentially relevant variable shall be identified.

627 The list of potentially relevant variables shall be amended to include data sources.

628 For each data source, the serial number or other unique identifiers for meters that would be used to
 629 collect data shall be noted.

630 Data source descriptions shall be specific so that an individual familiar with the systems and operations
 631 of the site could understand where and how to collect relevant variable data.

632 Based upon energy consumption adjustment modeling efforts and with customer input, a list of relevant
 633 variables for which data will be collected shall be assembled.

634 Review of which variables are selected as relevant variables shall be conducted annually, reflecting les-
 635 sons learned from the prior year and taking into account planned changes to the site.

636 Relevant variables shall be added and removed from the list of potential relevant variables as needed to
 637 reflect changes to energy uses and operations as well as taking into account feedback from efforts to
 638 establish energy consumption adjustment models.

639 Data for relevant variables shall be collected on an ongoing basis regardless of selected M&V approach.

2. Planning

640 2.3.3 Review of Relevant Variables

641 As needed, alternative relevant variables to facilitate model development may need to be identified.

642 An annual review, proportional to the changes that have occurred at the site since the last review and reflecting the need to develop any new energy consumption adjustment models, shall be conducted.

644 2.4 Planning for Energy Data Collection

645 Preparing for the collection of data involves the creation and update of an Energy Data Collection Plan, Energy Data and Performance Tracking Tool, and Opportunity Register.

647 As part of a PA sponsored SEM program, be aware of relevant PA or CPUC policies related to data collection and the source of energy, specifically for non-utility supplied energy and if a Public Purpose Program (PPP) charge is paid by the customer.

650 2.4.1 Energy Data Collection Plan

651 *2.4.1.1 Developing the Energy Data Collection Plan*

652 The Energy Data Collection Plan shall be developed for all customers regardless of M&V boundaries and method of determining energy savings to accommodate collection of energy consumption and relevant data identified as part of the M&V process, the process by which the data will be collected, and the persons responsible for collecting the data. The Energy Data Collection Plan will need to be modified to reflect selected M&V boundaries and method of determining energy savings.

657 The implementer shall work with the customer to develop an Energy Data Collection Plan being sure to identify who is responsible for collecting data, how often they are to collect data, and that they know how to record data in the Energy Data and Performance Tracking Tool.

660 The development and maintenance of the Energy Data Collection Plan shall be in part based upon information assembled when establishing M&V boundaries and identifying potential relevant variables. In addition to these considerations, the Energy Data Collection Plan shall include details identified in this section of the M&V Guide as well as by the PA and implementer if participating in a PA sponsored SEM program.

665 The Energy Data Collection Plan shall list the energy meters and relevant variables data sources for which data will be collected.

667 *For each of these data sources the Energy Data Collection Plan shall indicate:*

- 668 ■ How the data are to be collected.
- 669 ■ The frequency of data collection.
- 670 ■ Data storage method and location.
- 671 ■ The person(s) responsible for collecting and storing the data.
- 672 ■ The person(s) responsible for conducting quality control of the data.

673 A consistent and reliable process for acquiring and recording data shall be developed and recorded.

674 The steps (detailed appropriately to the skills, experience, and abilities of the person collecting the data) to be followed ensure timely acquisition and quality control of data shall be listed.

2. Planning

676 A complete collection process shall include:

- 677 ■ Data required.
- 678 ■ Data location.
- 679 ■ Method of analysis to ensure data quality.

680 In some sites, a data collection process may already be in place and can be utilized. If data that need
681 to be collected are not already collected, then determine if the organization has the means to collect
682 the data.

683 If not, the customer shall acquire additional metering equipment or identify different data that will
684 fulfill the same need. The Energy Data Collection Plan shall reflect if such considerations are needed.

685 *2.4.1.1.1 Meter Data*

686 Energy meters (utility or submeters) may directly report energy consumption values or physical pro-
687 perties such as pressure, temperature, mass, volumetric flow, and heating value that can be used to
688 calculate energy consumption by using equations and conversion factors

689 Equations and conversion factors used to convert meter output data to other metrics and values shall
690 be documented.

691 Quantification of energy consumption or of a relevant variable via subtraction of readings from two or
692 more calibrated meters is acceptable.

693 *2.4.1.1.2 Frequency of Data Collection*

694 Energy and relevant variable data shall be collected at least monthly if not more frequent (e.g., weekly,
695 daily, and 15-minute interval).

696 In general, more frequent data collection can be beneficial in the development of robust energy con-
697 sumption adjustment models.

698 The frequency of data collection may take into consideration the frequency at which energy con-
699 sumption data and relevant variable data can be obtained and be meaningful.

700 While this M&V Guide makes this conditioned allowance for a slower collection of data, it is highly
701 encouraged that data be collected at the most frequent rate possible for possible future use. More
702 frequently collected data can be aggregated together to match the rate at which relevant variable
703 data can be collected when forming energy consumption adjustment models (e.g., 15-minute interval
704 electricity consumption data can be aggregated to a weekly basis if the relevant variables associated
705 with electricity are only available on a weekly basis).

706 *2.4.1.1.3 Energy Types with Multiple Sources and Meters*

707 When a particular energy type is delivered to the M&V boundary from multiple sources (e.g., utility
708 supplied electricity and on-site generated electricity from a PV system, chilled water delivered by
709 another organization and water chilled by a chiller supplied with utility delivered electricity) or from
710 multiple meters for utility supplied energy, the quantity of energy from each originating source shall
711 be recorded separately.

712 These values may be aggregated in the formation of energy consumption adjustment models but
713 the disaggregated values shall be recorded independently for regulatory reporting purposes.

2. Planning

2.4.1.1.4 Meter Calibration

714 All data used as part of the energy accounting, including those for energy consumption and relevant variables, shall be taken from measurement systems if possible. In some instances, such as that for on-site solar, a conservative approach to estimating energy by using PA approved tools and assumptions may be used. If such a tool is used, then reporting documentation needs to include all relevant assumptions and provide a link to the tool itself.

715 If energy consumption data are taken from a source other than the utility meter, calibration of that meter shall follow the manufacturer's recommendations.

716 Calibration records and records of repairs to calibrated meters shall be maintained by the customer and available for the implementer to review if requested.

717 Calibration records for utility meters are not the responsibility of the customer or implementer and do not need to be maintained.

718 If the customer is unable to have meters calibrated then the meter does not need to be calibrated. If the meter is being used for relative comparison (i.e. not for their absolute value but the relative difference between values over time, e.g. an uncalibrated production meter is used where absolute production values are not necessary, only their relative changes over time) then the meter does not need to be calibrated.

2.4.1.2 Updating the Data Collection Plan

719 The implementer shall check in with the customer on a regular basis to ensure the Energy Data Collection Plan is being updated as needed.

720 When major changes occur at the site the customer shall inform the implementer and together assess what changes are needed to the Energy Data Collection Plan.

721 The Energy Data Collection Plan shall be reviewed and updated on at least an annual basis following review of the M&V boundaries and selection of relevant variables.

722 The Energy Data Collection Plan may need to be additionally updated if it is found to be ineffective, identified meters are removed or added, additional relevant variables are identified, or other extenuating circumstances arise.

723 Changes to the Energy Data Collection Plan shall be documented.

724 The updated Energy Data Collection Plan shall be put into place and used to retroactively collect data for the SEM Program Cycle and any time prior as needed.

2.4.2 Energy Data and Performance Tracking Tool

725 One or more Energy Data and Performance Tracking Tool shall be developed for all sites for each M&V boundary regardless of the method of determining energy savings and based upon the Energy Data Collection Plan. Energy Data and Performance Tracking Tools shall be annually reviewed and updated appropriately. The data collected and retained in the Energy Data and Performance Tracking Tool should be customized for each M&V boundary and ensure that at least the minimum amount of data required for M&V is included.

2. Planning

2.4.3 The Opportunity Register

751 The Opportunity Register is a living document and shall be inclusive of energy performance and EnMS improvement opportunities identified and completed outside of and during the multiple year PA sponsored SEM program (i.e. the Opportunity Register should include identified and completed opportunities from prior year engagements in the PA sponsored SEM program). The implementer shall work with the PA and customer to identify opportunities that have been identified, planned, and implemented at least two years prior to the start of the first SEM Program Cycle the customer participated in.

752 The Opportunity Register is used by the CPUC to determine influence of PA sponsored SEM programs. As such, some required components of the Opportunity Register may provide less value to the customer than others. Outside of a PA sponsored SEM program the customer can alter the Opportunity Register to meet their own needs.

762 Each row of the Opportunity Register shall correspond to an individual Energy Performance Improvement Action (EPIA). Each row of the opportunity register shall be filled out with a level of completeness and detail reflecting the development and implementation of the associated EPIA. It is expected that the Opportunity Register, as a living document, will continue to be filled out as information about EPIAs are better understood and implementation of some EPIAs moves forward. Opportunity Register rows associated with EPIAs that are early in the planning or development stages will not need to be as complete as those for EPIAs that are implemented. Opportunity Register rows associated with an implemented EPIA for which energy savings will be claimed as part of the bottom-up method should be filled out completely.

2.4.3.1 Establishing the Opportunity Register

772 An Opportunity Register shall be created to accommodate data related to EPIAs and EnMS improvement opportunities.

774 *The Opportunity Register shall include the following sections and fields for entry:*

775 **■ A description section:**

- 776 » ID number
- 777 » Name
- 778 » Description (e.g. Replace outside air damper actuators in all AHUs, place employee energy savings opportunity box in break room)
- 779 » Process/system category (e.g. HVAC, lighting, compressed air, pumping, opportunity identification)
- 780 » Process/system description (e.g. equipment type, size, capacity, load, operating conditions)
- 781 » Location (e.g. Building 7, process line 3)
- 782 » Opportunity type (e.g. capital, process, maintenance, operational, behavioral, EnMS)

785 **■ An identification section:**

- 786 » Identified by (e.g. SEM treasure hunt, IOU assessment, employee suggestion, internal audit, management review)
- 787 » Identification date
- 788 » SEM influence (binary entry: "yes" or "no," depending if measure was identified or planned as part of a PA sponsored SEM program or not, see Section 3.12.2.2)

791 **■ A prioritize section:**

- 792 » Qualitative (e.g. low, medium, or high) or quantitative indicator of estimated energy saving for energy types primary affected
- 793 » Qualitative (e.g. low, medium, or high) or quantitative indicator of cost/effort required

795 **■ A planning section:**

- 796 » Next steps (or the required actions to complete)
- 797 » Owner (i.e. who is responsible to moving the opportunity forward as appropriate)
- 798 » Target implementation date

2. Planning

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813

- **An ensure persistence section:**
 - » Backsliding risk (i.e. how likely it is that the energy savings from this project will decline without regular attention paid by key personnel),
 - » Persistence strategy (brief description, this should likely be documented more fully elsewhere)
 - » Start of Cycle 2 confirmation from customer EPIA is still installed and functional
 - » Start of Cycle 2 persistence review date
 - » Start of Cycle 3 confirmation from customer EPIA is still installed and functional
 - » Start of Cycle 3 persistence review date
 - » End of Cycle 3 confirmation from customer EPIA is still installed and functional
 - » End of Cycle 3 persistence review date

Note: The completion of persistence review and review date fields should be conducted, if applicable, based upon the implementation status and implementation date of the EPIA. The addition of more persistence review columns can be made based upon extended engagement in the SEM program (e.g. "Graduate Pathway")

814
815
816
817
818
819
820

- **An implementation section:**
 - » Implementation status (e.g. implemented, implementing now, implement later, not to be implemented, not implement)
 - » Implementation status date (i.e. the date the implementation status was updated)
 - » Implementation date
 - » EPIA cost - based upon guidance from PA along with invoice documentation supporting cost value

821
822
823
824
825
826

- **A results section:**
 - » Annualized energy savings for each type of energy affected
 - » Reporting Period pro-rated energy savings for each type of energy affected
 - » Annualized demand savings for each type of energy affected
 - » Reporting Period pro-rated demand savings for each type of energy affected

Notes where documentation for data, calculations, and other details can be found.

827
828
829
830

The results section shall be completed if energy savings resulting from the EPIA will be included as part of reporting energy savings using a bottom-up approach. If this is the case the requirements of this M&V Guide shall be followed when calculating EPIA energy savings. Otherwise, the results section may optionally be completed or fields left blank.

831
832

The Opportunity Register may include additional sections and fields as suggested by the PA, implementer, and customer.

833

2.4.3.2 Planning to Collect Data for EPIAs

834
835
836
837
838
839

The Opportunity Register shall be filled out as part of a PA sponsored SEM program regardless if a top-down or bottom-up method will be used to determine energy savings. Guidance on calculating energy savings for individual EPIAs are listed in [Annex C – Bottom Up EPIA Calculation Effort](#) and should be consulted when planning for data collection to determine the results of implemented EPIAs if the energy savings for the EPIA will be included as part of reporting energy savings using the bottom-up method.

840

2.5 Selecting the M&V Boundaries and Method

841
842
843
844

Measurement and Verification (M&V) boundaries establish the geographic and operational limits within which energy performance improvements are measured, verified, and reported. These boundaries may align directly with the overall site boundaries or may consist of smaller, clearly defined systems or process areas within the larger site boundary.

2. Planning

845 Note, the definition of M&V boundary is: organizational, physical, site, equipment, systems, process or
 846 activity limits within which energy performance or energy performance improvement is measured and
 847 verified.

848 M&V boundaries, listed in order of preference, can be established site-wide, at a systems-level, or for in-
 849 dividual EPIAs.

850 Site-wide and system-level M&V boundaries are used with the top-down energy consumption adjust-
 851 ment model method. EPIA M&V boundaries can be used with either a top-down or engineering calcu-
 852 lation bottom-up method.

853 Selecting appropriate M&V boundaries involves a systematic evaluation to identify which approach
 854 (site-wide, system-level, or EPIA) is feasible and most beneficial for understanding and documenting
 855 energy performance improvements.

856 A structured logic flow shall follow to evaluate the appropriateness of using site-wide, system-level, or the
 857 EPIA M&V boundaries:

858 2.5.1 Assessing the Feasibility of Site-wide M&V Boundaries

859 A priority should be made on developing site-wide energy consumption adjustment models (a top-
 860 down approach) for each type of energy included in the M&V if feasible.

861 The following are non-exhaustive lists of potential indicators that site-wide energy consumption mode-
 862 ling efforts should not be made, that additional review and scrutiny should be placed on models as they
 863 may not be able to be used to calculate valid energy savings, or that energy models should be aban-
 864 doned. Regardless of the following being true for a site, the implementer may wish to attempt to develop
 865 site-wide energy consumption adjustment models.

866 *Before or at the beginning of engagement in the SEM Program:*

- 867 ■ Estimated M&V Boundary Energy Savings potential is less than 1% of annual site energy
 868 consumption or less than 100,000 kWh of electricity per year or 20,000 therms per year.
- 869 ■ Major site, production, or schedule changes have occurred in the past year or are planned in
 870 the next year.
- 871 ■ Site energy consumption is increasing at a rate greater than a few percent per year.
- 872 ■ EPIAs with greater than 5% of a baseline energy consumption have been identified and
 873 planned for implementation by the customer prior to the engagement in the SEM program
 874 and will be implemented in the Baseline Period or during engagement in the SEM Program.
- 875 ■ Highly variable production, production cycles longer than a month, or seasonal production
 876 are observed.
- 877 ■ On-site energy generation isn't metered and cannot be reasonably assessed.
- 878 ■ More than 10 energy meters for a given type of energy are identified.

879 *During engagement in the SEM Program:*

- 880 ■ Energy and relevant variable data are not being collected and site staff are not indicating
 881 interest in correcting this issue.

2. Planning

- 882 ■ Energy and/or relevant variable data are recorded in a format that will require excessive time
883 to process (e.g., PDF, manual logging sheets).
- 884 ■ Energy data quality is poor (e.g., missing intervals, multiple data points appear to be erroneous,
885 interval data isn't consistent with billing data).

886 Relevant variable data quality is poor (e.g., significant missing intervals, multiple data points appear to
887 be erroneous).

888 If a site-wide energy consumption adjustment model can potentially be developed for a given type of
889 energy, then the following actions shall be taken:

- 890 ■ Finalize the data collection plan.
- 891 ■ Develop the site-wide energy consumption adjustment model.

892 2.5.2 Assessing the Feasibility of System-level M&V Boundaries

893 If for a given type of energy, a site-wide model cannot potentially be developed, an evaluation of the
894 feasibility to create one or more system or process level energy consumption adjustment models (a top-
895 down approach) should be made using criteria similar to those in [section 2.5.1](#) and following considera-
896 tions:

- 897 ■ Availability of clear, consistent sub-metered energy data.
- 898 ■ Significant energy consumption within defined systems or process areas.
- 899 ■ Relevant variables available at the system-level and can meet the requirement of [section 2.3](#)
900 applied to the system-level.
- 901 ■ Meaning and value to the customer.

902 A system-level boundary can include any physical scope of boundaries that fits within the site-wide
903 boundary. Examples of system-level boundaries include one or more buildings, certain floors of a build-
904 ing, one or more process lines, a specific energy use (e.g. steam system).

905 If more than one system-level model is considered the M&V boundaries of each model shall not overlap.

906 If one or more system-wide energy consumption adjustment models are proposed for a given type of
907 energy, then the following actions shall be taken:

- 908 ■ Document the rationale for the system-level M&V boundaries.
- 909 ■ Finalize the data collection plan including the system-level M&V boundaries.
- 910 ■ Develop the system-level energy consumption adjustment model(s).

911 If a system-level energy consumption adjustment model cannot potentially be developed for a given
912 type of energy, then the reasons for this assessment shall be documented and a bottom-up method
913 shall be considered.

914 2.5.3 Assessing the Feasibility of EPIA M&V Boundaries

915 An EPIA M&V boundaries approach limits the M&V boundaries to the physical scope of a single EPIA. An
916 EPIA M&V boundary is described by the information entered for the EPIA in the Opportunity Register. As
917 with system-level M&V boundaries more than one EPIA M&V boundaries can be established so long as
918 the boundaries do not overlap and interactive effects are considered. A mixture of EPIA M&V boundaries
919 and system-level M&V boundaries can be employed so long as the boundaries do not overlap and inter-
920 active effects are considered.

2. Planning

921 Either an energy consumption adjustment model (top-down) method or engineering calculation (bot-
 922 tom-up) method can be used with EPIA M&V boundaries.

2.5.3.1 EPIA M&V Boundaries with a Top-down Method

924 *If one or more EPIA M&V boundaries for which energy consumption adjustment models are pro-
 925 posed for a given type of energy, then the following actions shall be taken:*

- 926 ■ Document the rationale for the EPIA M&V boundaries
- 927 ■ Finalize the data collection plan including the system-level M&V boundaries
- 928 ■ Develop the EPIA M&V boundary energy consumption adjustment model(s)

929 If a top-down method is used all requirements related to energy consumption adjustment models of
 930 this M&V Guide apply.

2.5.3.2 EPIA M&V Boundaries with a Bottom-up Method

932 *A bottom-up method may be considered for an EPIA M&V boundary when:*

- 933 ■ Distinct energy savings projects or actions (EPIAs) have been clearly identified
- 934 ■ Engineering calculations for these individual measures are feasible and practical
- 935 ■ Persistent difficulties exist in developing valid energy consumption adjustment models
- 936 ■ Efforts are being made to enable the creation of site-wide or system-level energy consumption
 937 adjustment models for subsequent Reporting Periods.

938 If a bottom-up method is sought for one or more EPIA M&V boundaries, the rationale to pursue the
 939 bottom-up method shall be documented in a "Notification of Bottom-up Method of Determining
 940 Energy Savings," (NOBU) summary and submitted to the PA for their review and approval. The NOBU
 941 shall contain:

- 942 ■ Detailed statement with supporting evidence of the efforts taken to-date to create site-wide
 943 and system-level energy consumption adjustment models.
- 944 ■ Justification with documentation for not further pursuing energy consumption adjustment
 945 models and switching to the bottom-up approach.
- 946 ■ Discussion of what efforts can and will be taken to enable the development of energy
 947 consumption adjustment models in subsequent Reporting Periods.

948 The NOBU shall be submitted to the PA for review and approval. The NOBU can be submitted at any
 949 time during the reporting period to the PA. The NOBU submission does not need to be connected
 950 to the mid-year report ([see section 4.4](#) for details on mid-year reporting). The NOBU should be sub-
 951 mitted as early as possible to enable robust review and comment but should only be done when doc-
 952 umentation can clearly show efforts were made to understand if energy consumption adjustment
 953 models would be valid for site-wide or systems-level M&V boundaries. If a reasonable potential that
 954 energy consumption adjustment models for a site-wide or systems-level M&V boundary could be de-
 955 veloped then efforts should be made to successfully develop those models rather than immediately
 956 pivot to a bottom-up approach.

957 An approved NOBU shall only be valid for the current Reporting Period. A new NOBU shall be re-
 958 quired for each subsequent Reporting Period if the bottom-up method shall be requested for those
 959 Reporting Periods, otherwise the assumption will be made that an energy consumption adjustment
 960 model will be developed for the same or different M&V boundaries.

961 **NOTE:** Only one NOBU summary is required for a site, regardless of the number of EPIA M&V
 962 boundaries established.

2. Planning

2.5.4 Updating the Site Characterization with M&V Boundaries

963 For each type of energy, all decisions regarding the selection of site-wide, system-level, or EPIA M&V boundaries must be clearly documented as part of the site characterization process (following site boundaries, [see section 2.2.7](#)). Documentation shall include:

- 967 ■ Chosen M&V boundaries
- 968 ■ Updated site images and flow diagrams reflecting any system-level M&V boundaries
- 969 ■ Chosen M&V approach for any EPIA M&V boundaries justification (top-down or bottom-up)
- 970 ■ NOBU summary, if appropriate
- 971 ■ Detailed rationale and supporting documentation for any deviations from initial feasibility
- 972 assessments

2.5.5 Updating the Data Collection Plan with M&V Boundaries

973 The Data Collection Plan should be updated to reflect chosen M&V boundaries. The data collection plan must be tailored to the chosen M&V boundaries and selected top-down or bottom-up method meeting the requirements of the Data Collection Plan ([section 2.4.1](#)).

2.5.6 Updating M&V Boundaries

974 Throughout the Reporting Period controlled or uncontrolled events, available data, or other factors may 975 necessitate updating the M&V boundaries. If M&V boundaries are to be updated the process and 976 hierarchy outlined in [section 2.5](#) should be followed. The PA should be notified if M&V boundaries are to be 977 changed.

978 *Some examples of reasons to update M&V boundaries include:*

- 979 ■ Cases where valid energy consumption adjustment models do not reflect operational or 980 other realities observed during the Reporting Period.
- 981 ■ Cases where results (positive or negative) from energy consumption adjustment models do 982 not align with other information such as expected energy savings from implemented EPIAs.
- 983 ■ Changes in customer engagement.
- 984 ■ Changes in data availability and quality.
- 985 ■ Additional data are made available that enable the development of site-wide or system-level 986 energy consumption models.
- 987 ■ Uncertainty in data quality or continued unavailability of data.

988 The observation that an energy consumption adjustment model is resulting in negative savings alone in 989 not justification for updating M&V boundaries ([see section 4.1.6](#)).

2.6 Collecting Data and Assessing Data Quality

990 Site level energy data collection shall be conducted regardless of the selected M&V boundaries and if an 991 energy consumption adjustment model can or will be developed. Collected data may be used later if 992 operations or other factors change as that data provides information about site operations in relation- 993 ship to the energy management system and captures results of implemented EPIA.

2. Planning

999 Data specific to the M&V boundaries should also be collected.

1000 The Energy Data Collection Plan shall be continuously used to guide the collection of energy consumption and relevant variable data in the Energy Data and Performance Tracking Tool. The customer shall ensure that data needed to calculate energy savings for implemented EPIAs listed on the Opportunity Register are collected as needed. Data pertaining to specific EPIAs do not necessarily need to be tracked in the Energy Data and Performance Tracking Tool. The collection, recording, and maintenance of data shall be led by the customer.

1006 **2.6.1 Collecting Data**

1007 The implementer shall ensure that data are being collected in accordance with the Energy Data Collection Plan on at least a monthly basis to ensure that data are being accurately collected and recorded.

1009 Energy data shall be recorded in the Energy Data and Performance Tracking Tool. Raw source data shall 1010 be preserved along with modifications made to data. Data continuity is critical to maintaining energy 1011 consumption adjustment model accuracy through the SEM program engagement.

1012 As data are collected, issues that arise with implementing the Energy Data Collection Plan shall be docu- 1013 mented and used to assess if modifications to the Energy Data Collection Plan are needed.

1014 **2.6.2 Reviewing for Data Outliers and Missing Data Points**

1015 Data outliers and missing data points can negatively impact the accuracy of energy consumption ad- 1016 justment models.

1017 Data outliers and missing data points shall be identified and addressed.

1018 Energy consumption and relevant variable data shall be screened for anomalous values that are not 1019 representative of typical operating conditions. If high variability is characteristic of the operation, outliers 1020 do not necessarily need to be removed. Data outliers can be an indicator of poor operational control and 1021 can be used to help identify possible energy performance improvement actions. The effect of outliers 1022 on the reliability of energy consumption adjustment models and the reason for removing them shall be 1023 maintained as a record.

1024 If an anomalous value is found, reasons for the anomaly shall be identified if possible. If the anomaly is 1025 determined to be a data error, the error shall be corrected if possible. If the anomaly is determined to be 1026 a data error that cannot be corrected, the anomalous value shall be deleted from the data set. The effects 1027 of data errors on the reliability of the energy consumption adjustment model and the reason for making 1028 any changes to the data set shall be maintained as a record. If the anomalous value is determined not to 1029 be a data error it shall be left in the data set.

1030 An initial review for outliers and missing data can be conducted by creating time series plots of data for 1031 energy consumption and relevant variable independently in a time series format. Outliers and missing 1032 or erroneous entries shall be flagged for review, investigation, and correction (if possible) by applying a 1033 general rule for identifying data that lie outside the range of plus or minus three standard deviations 1034 from the mean.

1035 A resolution strategy shall be developed for identified outliers. Regardless of rationale or explanation, 1036 data outliers beyond the plus or minus three standard deviations from the mean may be omitted. If 1037 outliers related to specific operating conditions are excluded from the Baseline Period, the intervals in 1038 the Reporting Period corresponding to the same conditions must also be excluded from the Reporting 1039 Period. The strategy used to remove outliers shall be documented.

2. Planning

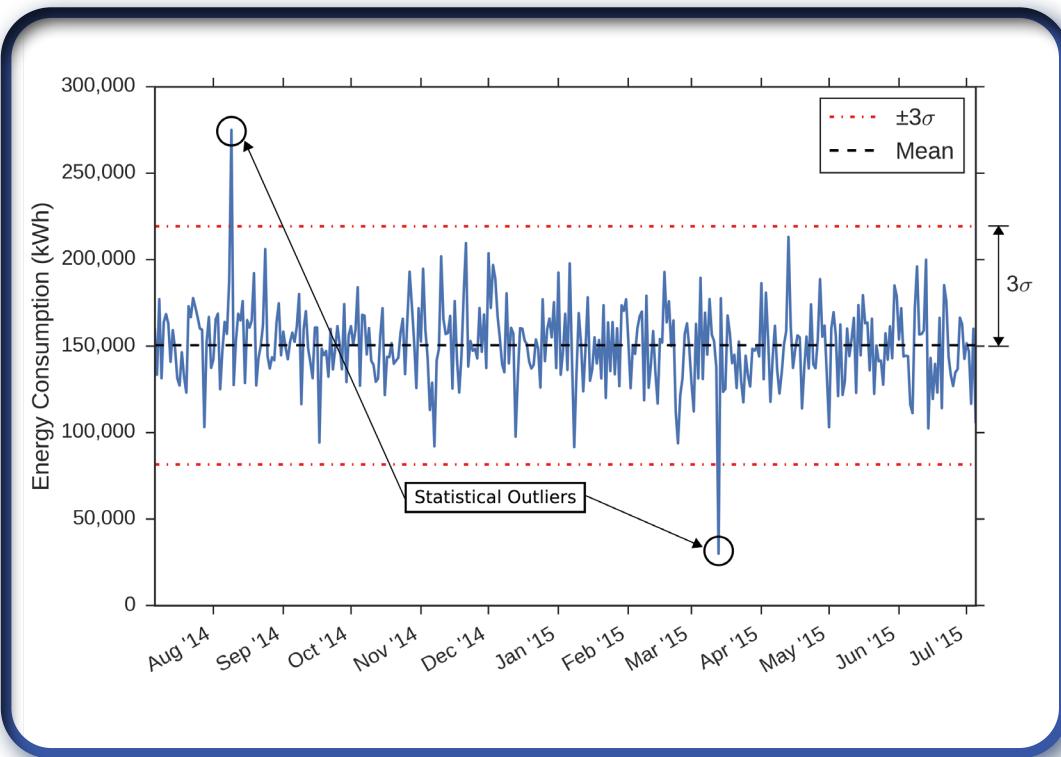


Figure 2. Example of Graphical Methods to Identify Outliers.

1040 Omitted data shall not be replaced with a calculated interpolation. Filling in missing data can skew energy
 1041 consumption adjustment model validity.

1042 **NOTE:** A particular type of outlier results from shut-down periods where production is zero. In
 1043 some facilities, this may only occur for a handful of days per year. If a single energy consumption
 1044 adjustment model can be created that reflects both the production and non-production
 1045 days, the shut-down outliers do not need to be excluded. Alternatively, a relevant variable can
 1046 be created to account for the effect of reoccurring shutdown days. If an otherwise valid ad-
 1047 justment model cannot be created to accommodate the shut-down periods, these periods
 1048 may be excluded from the model or treated as a separate mode of operation and modeled
 1049 independently. When determining a strategy, consider whether energy savings are expected
 1050 to be achieved during shutdown periods.

1051 **NOTE:** Outliers should not be excluded from data sets unless there is a reason to do so. For
 1052 example, a site may have outliers on major holidays. Consider adding an indicator variable
 1053 to represent those holidays, or simply exclude these holidays from the model. Note that any
 1054 reoccurring periods that are excluded from the baseline model must also be excluded from
 1055 the Reporting Period.

1056 **NOTE:** Be careful to distinguish between a zero-data point and a missing data point. Missing
 1057 data should be excluded and not treated as a zero.

1058 **NOTE:** The removal of outliers, especially in the cases when data is collected on a monthly
 1059 basis, can significantly affect an energy consumption model's predictive power. Careful con-
 1060 sideration should be made regarding the removal of outliers when data is collected on a less
 1061 frequent basis.

1062 Outliers shall be reviewed by the customer and implementer so that both parties understand the cause
 1063 of the anomaly. The customer shall take corrective action to reduce the potential for data outliers if pos-
 1064 sible as outliers can be an indicator of poor operational control or data collection systems. The omission
 1065 of data points shall be documented.

2. Planning

2.6.3 Adjusting Data for Time-Series Offsets

1066 Energy consumption and relevant variable data will frequently not be available for exact calendar months or aligned with other time intervals. For example, monthly production data may be reported on the first of the month, while utility data may be provided mid-month. Alignment of time intervals is preferred and may facilitate development of more representative adjustment models, but it is not required.

1071 A time-series offset may exist between energy consumption and relevant variable data. Energy consumption and relevant variable data shall be reviewed to identify time-series offsets. This most commonly occurs when data are collected at high frequency levels (typically weekly or higher). Time-series offsets 1072 that negatively affect adjustment model development shall not be used.

1073 Time-series plots shall be used to identify consistent offsets between energy consumption data and each 1074 relevant variable. For example, if an energy-intensive process has a two-day lead time from the point at which 1075 production levels are measured, a two-day time series adjustment may need to be applied to the 1076 production variable.

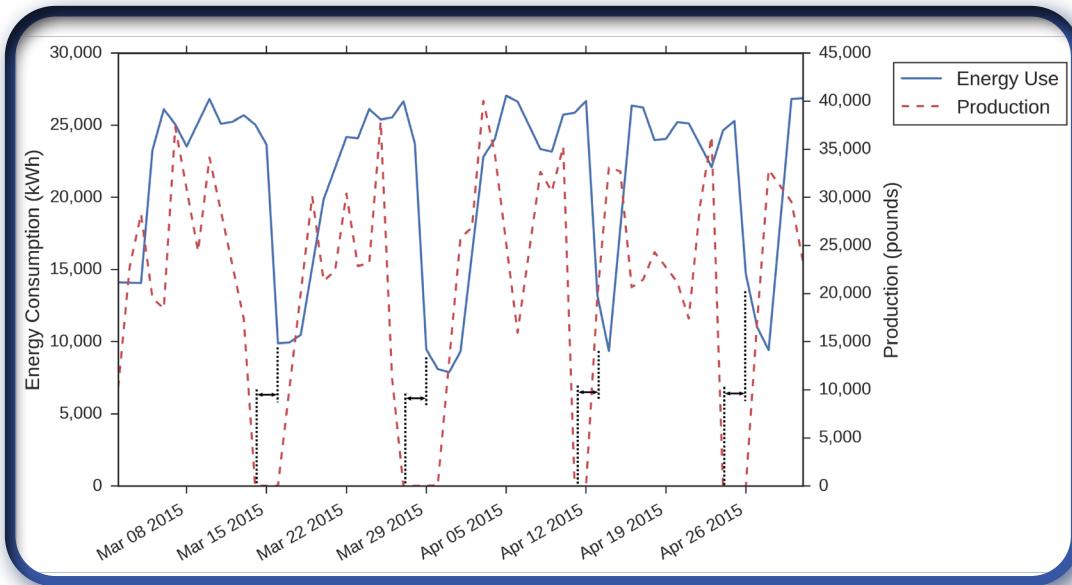


Figure 3. Example of a Time-series Plot (Energy Consumption and Production vs. Time).
Arrows Indicate the Time-series Offset.

1079 If such an offset is identified, the customer and implementer shall discuss if the application of a time-series 1080 adjustment, or if aggregating data such that the data frequency interval is lower (e.g. aggregate so 1081 that all data are represented on a weekly rather than daily time interval), would improve the adjustment 1082 model. The decision to use a time-series adjustment shall be documented.

1083 As part of an PA sponsored SEM program engagement, data collected on a monthly basis or irregular 1084 time intervals (such as billing cycles roughly issued on a monthly basis) shall be weighted based upon 1085 the number of days in the month the data were collected. Weighting should be based upon the number 1086 of days within the month or irregular time interval. These weighted values should be recorded alongside 1087 the original values and weighting value.

3 Energy Consumption Adjustment Modeling 37

3.1 Introduction	37
3.2 Process	37
3.3 Considerations when Developing Energy Consumption Adjustment Models with Data from Multiple Meters	38
3.4 Establishing Relationships Between Energy Consumption and Relevant Variables	38
3.4.1 Confirming a Relationship	38
3.4.2 Change-point Variables	39
3.4.3 Multicollinearity	40
3.4.4 Weather Variables	40
3.5 Establishing Energy Baseline	40
3.6 Developing Energy Consumption Adjustment Models	41
3.6.1 Simplicity principal	42
3.6.2 Frequency of Data used to Create Models	42
3.7 Reviewing Competing Energy Consumption Adjustment Models	43
3.7.1 Assessing Statistical Significance of Relevant Variables	43
3.7.2 Validating Models with Statistical Tests	43
3.7.3 Validating Models with Qualitative Considerations	43
3.7.4 Table of Competing Models	44
3.8 Selecting Energy Consumption Adjustment Models to Track Energy Performance and Calculate Energy Savings	45
3.9 Ongoing Confirmation of Model Validity	45
3.10 Options when a Valid Energy Consumption Adjustment Model Cannot be Created or Models in use Fail Validity Tests	46
3.11 Continued Use of Energy Baselines and Energy Consumption Adjustment Model(s)	49
3.12 Monitoring Energy Performance	50
3.12.1 Tracking Energy Performance with Energy Consumption Adjustment Models	50
3.12.2 Tracking Energy Performance with the Opportunity Register	51
3.13 Calculating Energy Savings with Energy Consumption Adjustment Models	53
3.13.1 Process	53
3.13.2 Confirm the Reporting Period	53
3.13.3 Calculating Avoided Energy Consumption Energy Savings	53
3.13.4 Establishing Confidence in Energy Savings	54
3.13.5 Calculating Incremental Energy Savings for Consecutive Reporting Periods using the Same Energy Consumption Adjustment Model	56
3.13.6 Annualization of Energy Savings	57

3. Energy Modeling

3 Energy Consumption Adjustment Modeling

3.1 Introduction

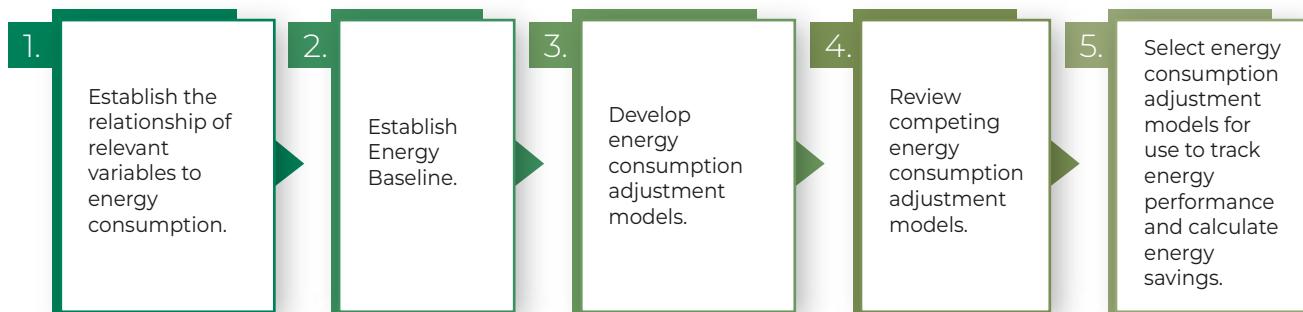
1088 The primary method for determining energy savings shall be to develop and use one or more energy consumption adjustment models for each type of energy identified in [Section 2.2.1](#)

1090 To aid in the customer's understanding of their site and ability to develop energy consumption adjustment models, the implementer shall strive to develop simple and easily understood models rather than complex models that may statistically be more precise. Multiple energy consumption adjustment models for a specific type of energy may be needed to achieve this simplicity principle.

1092 While a number of energy consumption adjustment modeling methods exist, the forecast method shall be used if energy consumption adjustment models are to be developed as part of a PA sponsored SEM Program Cycle as it meets all of the goals and objectives identified in this M&V Guide.

1094 The forecast energy consumption adjustment model method allows the model user to estimate what Reporting Period energy consumption would have been if the site had not implemented any EPIAs during the Reporting Period and operated as it did during the Baseline Period.

1096 The forecast method provides a predictive energy consumption adjustment model that once developed can be used to track energy performance and routinely determine energy savings.


1098 The forecast model can also be used to project energy demand if future relevant variable quantities, such as production volume, are known.

1100 Alternative modeling methods do not necessarily meet all of the objectives for energy consumption adjustment models identified in this M&V Guide and do not necessarily offer an opportunity for immediate customer education and ability to respond to unexpected model results.

1102 This M&V Guide acknowledges that the forecast model method does have limitations, particularly if site energy use and operating conditions change significantly during the Reporting Period. If forecast models cannot be developed for a given type of energy, then the implementer may use the backcast model method for the purposes of regulatory reporting of energy savings. Only the backcast model method is provided as an alternative in this M&V Guide. This limitation is intentional as to deter excess expenditure or resources to develop any working energy consumption adjustment model and help ensure the focus of the M&V process remains on customer education and building systems that the customer can use on their own in the future.

3.2 Process

1117 *Development of one or more energy consumption adjustment models for each energy type shall be considered with the following process:*

3. Energy Modeling

3.3 Considerations when Developing Energy Consumption Adjustment Models with Data from Multiple Meters

When developing energy consumption adjustment models and energy data for a given type of energy is available from multiple meters, one of the following options shall be followed:

- Aggregate energy data. Sum the data from two or more meters to create an aggregate of site energy data. If meter data is collected at different intervals, aggregate to the largest sampling interval. This method is appropriate when:
 - » Meters have the same interval, or the meter capturing the greatest energy consumption has the largest sampling interval.
 - » The same relevant variables apply to all meters.
 - » The resulting energy consumption adjustment model created by using the aggregate data is simple and meaningful.
- Build separate energy consumption adjustment models. Build an individual energy consumption adjustment model for each meter. Energy savings calculated for each model will be aggregated. Multiple models for a given type of energy may be created so long as the boundaries of each model do not overlap with one another and fit within the larger M&V boundary. Each model must meet the requirements of Sections 3.7.2 and 3.7.3. This method is appropriate when:
 - » An aggregate energy consumption adjustment model will have a large number of relevant variables.
 - » Meters serve different areas or processes with different relevant variables.
 - » Meters have different measurement intervals, especially if a meter with the largest energy consumption has much finer granularity than the other meter(s).
 - » The customer prefers separate models for greater context of energy performance tracking and energy savings.
- Ignore meters. If the loads connected to a meter are outside the M&V boundaries or are used to meter negligible portion of a given type of energy (approximately less than 2% of site energy baseline energy consumption for a given type of energy), exclude these meters.

3.4 Establishing Relationships Between Energy Consumption and Relevant Variables

Energy consumption adjustment models shall be created based upon an informed understanding of the characteristics of the equipment, operations, and processes present within the M&V boundaries. To establish the relationship between energy consumption and relevant variables the following guidance shall be followed appropriately:

3.4.1 Confirming a Relationship

Use scatter diagrams to visually confirm whether a linear relationship exists between energy consumption data for each type of energy for which energy savings are being determined and each relevant variable.

3. Energy Modeling

1158 Though not statistically tested at this point, a lack of relationship between energy consumption and a
 1159 relevant variable for which a relationship was expected shall prompt a discussion between the customer
 1160 and implementer. This result may be due to poor operational control or a mischaracterization of the site.

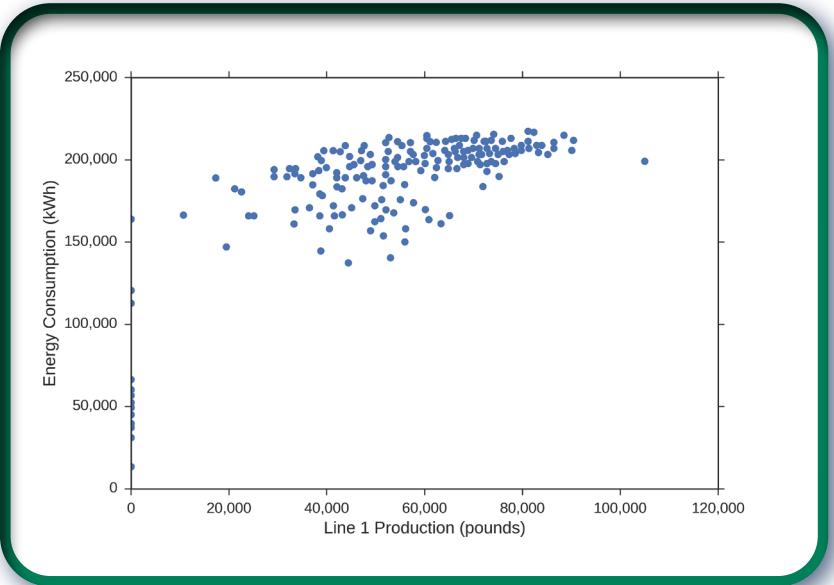


Figure 4. Example of a Scatter Plot (Energy Consumption vs. Production).

3.4.2 Change-point Variables

1161 Sites may have operational conditions related to energy consumption that change at some value of that
 1162 variable. A common example is of sites that have an ambient-dependent energy profile which will often
 1163 exhibit a “change-point” characteristic. The presence of a “change-point” can be determined by plotting
 1164 a relevant variable versus energy consumption. Modeling a site that exhibits a change-point with a single
 1165 linear model introduces unnecessary error. Alternative relevant variables or a Multi-Mode Model shall be
 1166 considered if a change-point is observed.
 1167

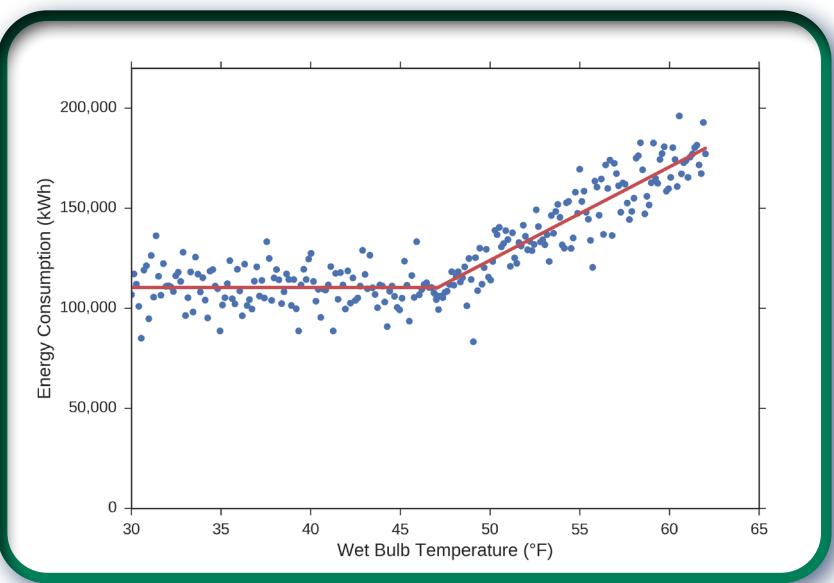


Figure 5. Example of a Change-point.

3. Energy Modeling

3.4.3 Multicollinearity

When two or more relevant variables exhibit correlation for the same energy type, multicollinearity is present. Adding and removing variables from the adjustment model will affect the significance of other variables. The presence of collinear variables can understate the statistical significance of individual relevant variables. Although in many cases multicollinearity is unavoidable, it reduces the ability of statistical tests to establish model validity. While multicollinearity does not affect the model's predictive capacity, it has the potential to add unnecessary complexity. Multicollinearity shall be minimized if possible. [See Annex D – Multicollinearity and Autocorrelation](#), for a discussion on the effect of multicollinearity on an adjustment model.

3.4.4 Weather Variables

Weather can be represented in terms of a number of variables including average temperature, solar radiation, rainfall humidity, wet-bulb temperature, CDD and HDD, etc.. When developing energy consumption adjustment models both approaches should be examined. For weekly and monthly models, a CDD/HDD model is preferred because it better represents heating and cooling demands over an aggregate period. For daily models, a CDD/HDD model is functionally equivalent to an average temperature model with a change point.

Weather correlation often masks other seasonal changes. Judgment and knowledge about the site and its equipment should be used to determine whether energy consumption is truly affected by ambient weather. If no justification exists for a weather correlation, identify a more appropriate relevant variable to characterize the seasonal changes.

3.5 Establishing Energy Baseline

Pursuant to CPUC Decision 16-08-019, SEM uses an “existing baseline condition” basis for determining energy savings. As such, the energy baseline naturally accounts for a site’s compliance with code and local regulation and any program influenced improvements in energy efficiency shall be claimed and attributed to the SEM program. Past and current operational practices (whether good or bad), currently installed technology (industry standard or not), as well as, past, current, and future code, regulatory, and permit compliance (or lack thereof), and operations are included “as is” in the energy baseline and themselves should not be taken into account to adjust the energy baseline.

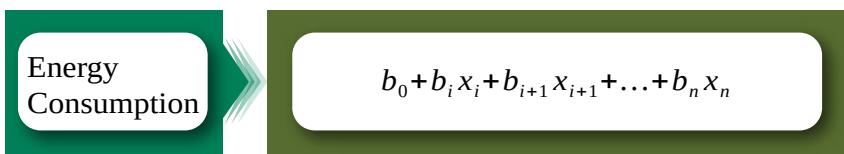
While the energy baseline is an existing conditions baseline, certain EPIAs and non-routine events that may have taken place during the Baseline Period need to be removed from the energy baseline to establish a clear understanding of the relationship of energy consumption to relevant variables prior to the time periods for which an energy consumption adjustment model will be used.

In order to create energy consumption adjustment models that reflect regular site operations, customer and PA records shall be reviewed to determine if any incentivized or non-incentivized EPIAs with sizable energy savings were implemented during the Baseline Period. In addition to reviewing customer records, interviews with customer staff shall be conducted to determine if other non-incentivized EPIAs or changes that increased energy consumption occurred. If the customer had previously participated in a PA sponsored SEM Program Cycle the Opportunity Register should be a continuation from that prior engagement and shall be reviewed for implemented EPIAs.

If such EPIAs were implemented during the Baseline Period, project records shall be obtained to accurately capture implementation dates and the magnitude of verified savings as needed. Ensure these EPIAs are documented on the Opportunity Register.

3. Energy Modeling

1210 If EPIAs implemented during the Baseline Period are identified, consider modifying the Baseline Period to a time period when the EPIA was not implemented. If the EPIA was implemented after the Baseline Period and prior to the start of the SEM Engagement Period adjust the baseline to account for the EPIA.


1213 If the Baseline Period includes implemented EPIAs, confirm whether the PA does or does not have approved annualized energy savings values for the EPIA. Approved energy savings values shall be used for any adjustment made because of the EPIA. If the PA approved energy savings values are not available, calculate energy savings for the EPIA following the requirements of this M&V Guide (see Section 3.12.2.1).

1217 Use prorated energy savings values to adjust the energy consumption of the Energy Baseline using PA approved energy savings values if they are available. Prorating of energy savings should be based upon the EPIA implementation date. Confirm the implementation date recorded by the PA, if available, against the records and memory of site staff. Use the implementation date that best connects to when energy savings resulting from the EPIA would have been realized.

1222 EPIAs that are known to have a seasonal nature can be removed from the energy baseline accounting for known seasonality.

3.6 Developing Energy Consumption Adjustment Models

1225 Using information gathered as part of the M&V process, for each energy type for which data are collected, develop one or more energy consumption adjustment models with the form:

1227 with i from 1 to n representing the number of relevant variables used in the energy consumption adjustment model and where xi is the relevant variable quantity, $b0$ is the base load delivered energy consumption not related to relevant variables, and bi (when $i > 0$) is the incremental energy consumption per unit of that relevant variable (coefficient).

1231 Attempts shall be made to develop one or more energy consumption adjustment models for each energy type in order to capture the full M&V boundary as best possible. If development of models to encompass the full M&V boundary is not possible then developing multiple energy consumption models that "fit" within the M&V boundary shall be attempted.

1235 Depending on the list of selected relevant variables identified in the Energy Data Collection Plan for which data were collected, attempts shall be made to develop competing models that can be assessed with the quantitative and qualitative validity tests described in the energy consumption adjustment model validity section (3.7) of this M&V Guide.

3. Energy Modeling

3.6.1 Simplicity principal

1240 The desire to create the most descriptive or “perfect” model can lead to a disproportionate use of resources.
 1241 The objectives of creating energy consumption models extend beyond creating tools to estimate
 1242 M&V Boundary Energy Savings.

1243 *Simple energy consumption adjustment models have multiple benefits:*

Easier data collection:	Better understanding of the model:	Reduced likelihood of outliers and errors:
<p>In some cases, collecting production data may be a burden to the customer. Minimizing the data requirements for a customer may increase buy-in to data collection and use of the energy consumption adjustment models used to track energy performance, and are used by the program to calculate energy savings.</p>	<p>A model that can be easily explained will be better understood by the customer, which will increase their trust in the energy savings predicted by the final model.</p>	<p>A model with fewer variables is less likely to suffer from data-entry errors and/or outliers during the Reporting Period. A simple model is more “durable” and therefore more useful to a customer long-term.</p>

1244 Customers need to be able to understand the modeling process and outputs so they can track energy performance and determine energy performance improvement using the model. Creating simple models that are easily understood in their relationship of energy consumption and relevant variables will assist in this understanding.

1248 As guidance, if the number of relevant variables are being used in a single energy consumption adjustment model is greater than the number of energy baseline period intervals divided by six the modeler
 1249 should consider options to simplify the model. However, also consider that an energy consumption adjustment model which is too simple and does not include sufficient relevant variables can provide poor
 1250 predictive capability. Weigh the pros and cons of each combination of variables to determine a minimal
 1251 level of model complexity while providing adequate energy savings estimations.

3.6.2 Frequency of Data used to Create Models

1255 When possible, use daily intervals to develop energy consumption adjustment models. Models based on
 1256 daily data allows the customer to track energy performance frequently during the SEM Program Cycle
 1257 and can improve overall model accuracy by increasing the number of Baseline and Reporting Period
 1258 data points. Meter data can often be acquired in 15-minute intervals and summed into daily energy data.
 1259 The frequency of energy data will need to match that of relevant variable data.

1260 If a multi-day time-shift exists between energy consumption and the primary production relevant variable,
 1261 consider using weekly model rather than a daily model.

1262 If daily production or other relevant variable data is not available, weekly or monthly model intervals can
 1263 be used. Weekly model intervals are preferred over monthly. Ensure that energy consumption data is
 1264 accurately summed to match relevant variable intervals.

3. Energy Modeling

3.7 Reviewing Competing Energy Consumption Adjustment Models

3.7.1 Assessing Statistical Significance of Relevant Variables

1265 To establish quantitative validity, each relevant variable used in an energy consumption adjustment model shall meet all of the following statistical tests:

Statistical Tests	Statistical Test Threshold Values
T-stat	Absolute value > 2.00
p-value	< 0.05

Table 2: Relevant Variable Statistical Tests

1269 Adding and removing relevant variables will affect the significance of other relevant variables. In many
 1270 cases, multicollinearity is unavoidable; however, multicollinearity should be taken into consideration
 1271 when validating the statistical significance of each relevant variable. While multicollinearity does not
 1272 affect the model's predictive capacity, it has the potential to add unnecessary complexity. [See Annex D –](#)
 1273 [Multicollinearity and Autocorrelation](#), for information.

3.7.2 Validating Models with Statistical Tests

1274 *The following statistical tests shall be applied to all energy consumption adjustment models:*

Statistical Tests	Statistical Test Threshold Values
Number of Relevant Variables	< 5
Model R ²	> 0.75
Net Determination Bias	< 0.005%
Coefficient of Variation	< 20% for daily models < 10% for weekly models < 5% for monthly models
Durbin-Watson	~ 2
Fractional Savings Uncertainty (predictive)	< 50% Apply roughly estimated energy savings and Reporting Period interval frequency.

Table 3: Energy Consumption Statistical Tests

3.7.3 Validating Models with Qualitative Considerations

1275 As energy consumption adjustment models shall be only used to calculate energy savings if the model
 1276 meaningfully represents the site's relationship of energy consumption to relevant variables.

3. Energy Modeling

1279 Equal to the statistical validity tests, the selection of energy consumption models shall be based upon
 1280 assessment of qualitative considerations, including that:

- The model when applied to Baseline Period appears to produce a stable and near zero savings result.
- The selection of relevant variables in the adjustment model and the subsequently determined relevant variable coefficients are consistent with a logical understanding of the energy use and energy consumption of the site.
- Meters used were functioning, calibrated, and maintained as appropriate.

1287 Additionally, considerations including the simplicity of the energy consumption adjustment model, meaning of the model to the customer, and the ability to continue collecting data required for use of the
 1288 model shall be considered.
 1289

1290 **3.7.4 Table of Competing Models**

1291 In order to demonstrate the effort and process followed to develop and select meaningful energy consumption adjustment models a description of the modeling down selection process and a table of competing models shall be created for each energy consumption adjustment model developed. The model down selection process and table of competing models shall be provided during the Mid-Year Review if available at that time and documented in the SEM Reporting Period Performance Report.

1296 *The description of the modeling down selection process shall include:*

- The number of models developed and assessed.
- The number of models that met more than 50% of the statistical tests identified in Section 3.7.2.
- The number of model that were considered for use and the qualitative assessment applied.
- A statement of the quantitative and qualitative reasons why the model selected for use was chosen over others.

1303 The table of competing models shall include at most three of the most meaningful energy consumption adjustment models that were considered with both quantitative and qualitative assessment but not selected for use. The table shall include a row for each competing model and a column for each of the following:
 1304
 1305
 1306

- Model reference number.
- Data interval (frequency).
- Baseline Period start and end dates.
- Upcoming Reporting Period start and end dates.
- R^2 .
- Net determination bias.
- Coefficient of variation.
- Durbin Watson.
- Projected fractional savings uncertainty.
- Comments about the model.

1317 Four columns of each row should be subdivided to provide information about the relevant variables that
 1318 are used to form the model. The four columns should include:
 1319
 1320
 1321
 1322

- Name of the relevant variable.
- Relevant variable coefficient value.
- T-stat.
- P-value.

3. Energy Modeling

1323 An example showing the graphical layout of the table of competing models is provided in [Annex E – Graphical Representation of the Table of Competing Models](#).

1325 The table of competing models shall be filled out as the energy consumption adjustment modeling development effort proceeds.

3.8 Selecting Energy Consumption Adjustment Models to Track Energy Performance and Calculate Energy Savings

1329 The selection of energy consumption adjustment models that will be used to track energy performance and determine energy performance improvement shall be made based upon quantitative and qualitative model validity testing described in this M&V Guide.

1332 The table of competing models should be used along with qualitative assessments to select energy consumption adjustment models that will be used to track energy performance and calculate energy savings.

1335 The selection of energy consumption adjustment models should not be narrowly driven by evaluating which model “best” meets statistical tests as meaningful models may not meet all listed statistical tests. For example, a low R^2 value may be the result for a site with low variation in energy consumption. In cases where all of the tests cannot be met but a model passes a majority of the statistical tests and meets the qualitative requirements of [Section 3.7.3](#), the customer and implementer together shall select which models to use moving forward. The energy consumption adjustment model selection rationale shall be documented.

3.9 Ongoing Confirmation of Model Validity

1343 It is recommended, but not required, that on at least quarterly basis confirmation of model validity be reviewed with the customer.

1345 *If conducted, ongoing confirmation of model validity should include answering the following questions:*

- 1347 ■ Have operating characteristics dramatically changed?
- 1348 ■ Has production or other relevant variable values changed to they are outside the range as recorded during the Baseline Period?
- 1350 ■ Have any major energy uses been installed or removed?
- 1351 ■ Does the level of energy savings achieved so far not reasonably align with energy savings from implemented EIAs listed on the Opportunity Register?
- 1353 ■ Have the site or M&V boundaries changed?

1354 If any of the above questions are answered, “yes,” then the quantitative and qualitative validity of the model should be confirmed. If the model cannot be confirmed as valid, options listed in [Section 3.10](#) shall be considered.

1357 Data collected for use with the selected energy consumption adjustment model shall be analyzed as well. Individual data intervals in the Reporting Period should be flagged as an outlier if a relevant variable data point is 10% beyond the bounds of the energy baseline data set.

3. Energy Modeling

1360 These points may be handled in one of three ways:

Include the point without alteration.

Exclude the point.

Develop a new energy consumption adjustment model.

This is appropriate if a representative population of residuals (defined by the implementer) for the point is not an outlier (plus or minus three standard deviations from the mean of the representative population) compared to the overall population of residuals.

This is appropriate if a representative population of residuals (defined by the implementer) of the outlier point (plus or minus three standard deviations from the mean of the representative population) is an outlier compared to the overall population of residuals. In this case the energy savings from this outlier point would have an outsized effect on the energy

This is appropriate if the outlier interval data points (plus or minus three standard deviations from the mean of the representative population) are caused by an issue that will fundamentally result in an energy consumption adjustment model that does not have a meaningful relationship to the energy consumption, uses, and operations of the site.

1361 1362 3.10 Options when a Valid Energy Consumption Adjustment Model Cannot be Created or Models in use Fail Validity Tests

1363 Energy consumption adjustment models that do not meet the model selection requirements of [Section 3.8](#) cannot be used in the calculation of energy savings as part of a PA sponsored SEM program and may potentially mislead customers. This applies to models being newly developed and models that have been used in the past.

1367 If such a case occurs, the party responsible for developing energy consumption adjustment models shall first attempt to modify the forecast adjustment model. This process might include modifications to the assumed relevant variables and frequency of data collection. Any changes that result in a successful energy consumption adjustment model shall be noted in the Energy Data Collection Plan.

1371 Changes to the Baseline Period are allowed as detailed in [Section 2.1.1.3](#) but are not recommended. The objective of the M&V process is not to hunt for a valid model but to collect data and assess if a model can be made to meaningfully represent the relationship of energy consumption to relevant variables.

1374 The below sections provide guidance when the development of an energy consumption adjustment model is not successful.

1376 3.10.1.1 Non-Routine Adjustments to the Baseline Energy Consumption

1377 Non-routine adjustments (NRA) are made to the observed (actual) energy consumption in the baseline and/or Reporting Periods if one or both of the following non-routine events (NRE) have occurred:

1. If static factors have changed during the Reporting Period.
2. If relevant variables have been subject to unusual changes.

1381 Examples of events that might require a non-routine adjustment include the following:

- A supplier goes out of business, and an equivalent raw material is not available. A process modification is needed to use a different type of raw material. No data exist for Baseline Period operating conditions with the new type of raw material.
- Processes are outsourced, enhancing profitability and decreasing energy consumption.

3. Energy Modeling

1386 ■ Business acquisition occurs which results in data not being available or in limits on the data available for the period prior to the acquisition.

1387

1388 ■ A piece of equipment becomes inoperable and is replaced with a temporary piece of equipment that consumes a different type of energy (e.g. air compressor or chiller replaced by a diesel-powered rental).

1389

1390 ■ A process is temporarily outsource to another site or supplier.

1391

1392 NREs can be detected through human feedback or statistical approaches. Site staff may be aware of changes to equipment, system, and processes that would cause a NRE. Manual identification of NREs relies on site staff knowledge of normal and abnormal operations which may cause some NREs to go undetected. Site staff knowledge of NREs shall be supported by statistical and other appropriate analysis.

1393

1394 NRE identification shall be supported by statistical or other quantified analysis. Any numeric inputs to non-routine adjustment calculations shall be based on observed, measured, or metered data.

1395

1396

1397 Examples of statistical and other quantified analysis approaches to NRE identification can be found in EVO's IPMVP Application Guide on Non-routine Events & Adjustments³ publication and the 2020 ECEEE conference paper Non-routing adjustments – towards standardizing M&V approach for quantifying the effects of static factors.⁴

1398

1399 The effort expended to calculate the amount of energy the non-routine adjustment will result in should be proportional to the level of expected energy adjustment and be in line with the guidance of [Annex C – Bottom Up EPIA Calculation Effort and Documentation](#).

1400

1401

1402

1403 The method for identifying and making the NRAs and the rationale for that method shall be maintained, including a start and end date, why they are “non-routine,” the general reasonableness of the methodology and calculations, the adequacy of the metering and monitoring methodologies, and conformance of the calculations applied. All calculations and data processing shall be transparent and retained within the model files and in other documentation as required in the M&V Guide and by the PA.

1404

1405

1406

1407

1408

1409

1410

1411

1412 If an open-ended non-routine event is specified, the documentation shall state clear conditions for how and when to re-evaluate ending the adjustment. For example, if an air compressor fails and a backup unit is in place, the condition would be the repair of the air compressor, and shutdown of the backup unit would end the non-routine event.

1413

1414

1415

1416 NRAs shall only be used after review and approval from the PA. The method for making the non-routine adjustment and the rationale for that method shall be documented.

1417

1418 ***3.10.1.2 Factoring for Seasonality and Operational Modes***

1419 Many sites experience seasonal swings in operation. Swings can occur because of seasonal changes in product type, product quantity, or correlations between ambient temperature and process loads. When operational swings cause a fundamental change in the energy consumption of a site, consider building multiple models if a single model is unable to adequately capture the seasonal variations.

1420

1421

1422

1423 If seasonal changes are moderate and gradual, a single model may be sufficient to characterize the entire energy baseline.

1424

1425

1426 If a site has a short period of abnormally high or low production with a different energy signature, or a negligible number of shutdown days throughout the year, consider removing these periods in the Baseline and Reporting Period as outliers.

1427

³Efficiency Valuation Organization (EVO), IPMVP Application Guide on Non-routine Events & Adjustments, 2020

⁴Earni, S. and Therkelsen, P., Non-routing adjustments – towards standardizing M&V approach for quantifying the effects of static factors. 2020. Presented at the ECEEE Industrial Summer Study, virtual event, DOI 10.20357/B71W20

3. Energy Modeling

1428 If short periods of abnormally high or low production with a different energy signature necessitates removal of these time periods from the energy consumption model, ensure that similar operational modes are not included in avoided or annualized energy savings determined from use of the energy consumption adjustment model.

1432 If seasonal changes are abrupt and extreme, consider creating a model that includes a production based relevant variable and another model that does not.

3.10.1.3 Change M&V Boundaries

1435 If the M&V boundary is supplied by multiple meters, disaggregating the meters may result in better model resolution.

1437 Sites experiencing swings due to weekend shutdowns are best modeled as one model with Saturday/Sunday/weekend indicator variables for simplicity.

1439 Table 4 is non exhaustive but outlines the pros and cons for building one model versus two models in certain circumstances.

Strategy	Pros	Cons
Single model with assumed year-round savings	Captures savings at all intervals. Easier to maintain one model than two. Most straightforward method, if energy consumption stays consistent.	Periods with abnormally high or low production can skew the model. Seasonal production relevant variables can lead to complex models with many relevant variables.
Single model with abnormally high or low production periods removed	Improves model accuracy during normal production periods. Works well if energy efficiency opportunities are minimal during excluded periods.	Reduces number of baseline data points. Unknown number of future data points due to production changes.
Dual production/non-production model	Each model has fewer variables and is easier to understand. Can improve model fitness compared to single model.	Maintenance of two models. Reduces number of baseline data points for each model.

Table 4: Options for Modeling for sites with Production Swings

1441 Models that exclude a significant site operation are not acceptable in general. If a model excludes shut down times or other period of low consumption and operation this is acceptable. If a model was to exclude certain product lines or other energy consuming operations arbitrarily this is not acceptable.

1444 The requirements of [Sections 3.3](#) and [3.8](#) shall be followed when creating multiple models.

1445 If attempts to modify an invalid model are unsuccessful, and the model remains out of compliance with the majority of validity requirements in [Section 3.7](#), and [Section 3.9](#) the efforts to remedy the model should be documented in a Notification of Bottom-up Method of Determining Energy Savings, and the implementer should use the bottom-up methodology for estimating and reporting savings from implemented EPIAs.

3.10.1.4 Backcast Energy Consumption Adjustment Model Development Method

1451 If forecast energy consumption adjustment models still cannot be created, use of the backcast method to develop energy consumption adjustment models can be considered. The development of a backcast energy consumption model is optional. A bottom-up approach to determining energy

3. Energy Modeling

1454 savings may be preferred. Rationale for the use of the backcast model over reporting energy savings
 1455 aggregated from implemented EPIAs must be supported, documented, and accepted by the PA.
 1456 Such rationale could include assumptions that significant energy savings will be achieved from
 1457 operational actions that would not be accounted for by the aggregation of energy savings for EPIA listed
 1458 on the Opportunity Register.

1459 Backcast normalization results in a model of the Reporting Period energy consumption that is applied
 1460 to the Baseline Period and Reporting Period-relevant variable values to calculate adjusted Reporting
 1461 Period energy consumption for comparison with observed (actual) Baseline Period energy consump-
 1462 tion. The adjusted Reporting Period energy consumption is an estimate of the energy consumption
 1463 that would have been expected at Baseline Period relevant variable values, if the Reporting Period
 1464 operating systems and practices were in place during the Baseline Period.

1465 ***The backcast normalization method is applicable in instances where:***

- 1466 ■ One or more relevant variables has significantly increased or decreased from the Baseline
 1467 Period through the Reporting Period.
- 1468 ■ The resolution of the energy signature for the Baseline Period was relatively poor and the
 1469 resolution of the energy signature during the Reporting Period has significantly improved.
- 1470 ■ No major operational or structural changes have occurred during the SEM Program Cycle.

1471 The backcast modeling method may be used so long as the validity requirements of [Section 3.7](#) are
 1472 taken into account. The justification and use of a backcast modeling method shall be documented.

1473 **3.11 Continued Use of Energy Baselines and Energy Consumption Adjustment 1474 Model(s)**

1475 Over the course of one or more SEM Program Cycles, changes to the operations, production, or equi-
 1476 pment can invalidate energy consumption models. If during periodic checks or during the Mid-Year
 1477 Review an energy consumption adjustment model is found to not be valid per the quantitative and qua-
 1478 litative tests in this M&V Guide, first examine if the model can be updated or if the energy baseline and
 1479 energy consumption adjustment model are no longer viable.

1480 If the energy baseline is no longer viable or the existing energy consumption adjustment model beco-
 1481 mes invalid, use of the energy consumption model shall be suspended and [Section 3.10](#) followed.

1482 An energy consumption adjustment model and its associated energy baseline that was approved for
 1483 use during a previous Reporting Period may be accepted for continued use so long as ***all of the fo-***
 1484 ***llowing are true:***

- 1485 ■ The customer has continuously participated in a PA sponsored SEM Program Cycle since the
 1486 original development of the energy consumption adjustment model (with an allowance for
 1487 gaps between SEM Program Cycles resulting from cohort launch or other timing issues).
- 1488 ■ Energy saving values that were submitted and accepted by the PA for all Reporting Periods
 1489 that preceded the current Reporting Period are available.
- 1490 ■ The energy consumption adjustment model and energy baseline data meet the quantitative
 1491 and qualitative requirements of this M&V Guide.
- 1492 ■ An Opportunity Register originally developed as part of a prior SEM Program Cycle is available.
- 1493 ■ Relevant variables selected as part of the process detailed in [Section 2.3](#) are not different than
 1494 those used in the existing energy consumption adjustment model.

3. Energy Modeling

- 1495 ■ More granular energy consumption and relevant variable data are not available compared to those available when the existing energy consumption adjustment model was created.
- 1496
- 1497 ■ The M&V boundaries have not changed.
- 1498 ■ The customer has not requested a new model.
- 1499
- 1500
- 1501
- 1502
- 1503
- 1504
- 1505
- 1506
- 1507
- 1508
- 1509
- 1510
- 1511
- 1512
- 1513
- 1514
- 1515
- 1516
- 1517
- 1518
- 1519
- 1520
- 1521
- 1522
- 1523
- 1524
- 1525
- 1526
- 1527
- 1528
- 1529
- 1530

The above listed criteria shall be reviewed before continued use of existing energy consumption adjustment modes in a new Reporting Period. If following this review the energy consumption adjustment model is not found to be valid, the energy consumption adjustment model shall not be used and a new energy baseline and energy consumption adjustment model(s) shall be developed.

The PA sponsoring the SEM program may at its discretion require a new Baseline Period, energy baseline, and energy consumption adjustment model development. This may be required at the beginning of new SEM Program Cycles to create a distinct basis for energy savings determination and to remove all residual effects of existing energy consumption adjustment models.

3.12 Monitoring Energy Performance

- 1507
- 1508
- 1509
- 1510
- 1511
- 1512
- 1513
- 1514
- 1515
- 1516
- 1517
- 1518
- 1519
- 1520

Energy performance should be monitored on a regular basis using the selected energy consumption adjustment models and the Opportunity Register.

This review is not intended to be a detailed evaluation to see if energy performance is as expected but allows for the identification of trends and decide if corrective actions need to be taken.

Backsliding refers to worsening energy performance compared to a previous achieved benchmark. Energy consumption adjustment models can be used to provide a feedback loop to identify and correct backsliding.

By reviewing if EPIAs are being implemented and generating expected energy saving and other results, the customer can ensure they are on track to meet energy performance targets and assess the effectiveness of their EnMS.

The review provides the implementer and customer a chance to ensure energy savings from implemented EPIAs are calculated with appropriate relative effort compared to an expected energy savings potential.

3.12.1 Tracking Energy Performance with Energy Consumption Adjustment Models

- 1521
- 1522
- 1523
- 1524
- 1525
- 1526
- 1527
- 1528
- 1529
- 1530

Data to be collected and captured by the Energy Performance Tracking Tool shall be updated with new data on at least a monthly basis.

The customer and implementer shall review the Energy Performance Tracking Tool on a regular basis to ensure data are being collected, energy performance is being calculated correctly, detect anomalous values, and account for situations not present in the Baseline Period that may need to be corrected for.

A time-series plot of actual and predicted energy consumption for each energy consumption model in use shall be created while tracking energy performance.

As new energy performance values are reviewed, an assessment to see if backsliding is occurring shall be performed. When backsliding is identified, corrective action shall be taken.

3. Energy Modeling

3.12.2 Tracking Energy Performance with the Opportunity Register

1531 On a regular basis, the customer and implementer shall together review the Opportunity Register to ensure that EPIAs are being implemented. If EPIAs are not being implemented as anticipated an assessment of why they are not being implemented shall be conducted.

1535 The implementer shall verify, at least quarterly, that the Opportunity Register is updated and maintained.

3.12.2.1 Calculating Annualized and Avoided Energy Consumption Energy Savings for EPIAs

1537 Annualized and pro-rated energy savings for the Reporting Period (energy savings that would be realized in the Reporting Period based upon the EPIA implementation date) shall be determined after the action is implemented for each EPIA that will be included as part of the bottom-up based energy savings reporting.

1541 In many cases, it will be difficult to assess the energy savings potential of BRO measures with accuracy.

1542 M&V plans for EPIAs shall not be required.

1543 If the customer will be applying for a custom capital or deemed incentive for a given EPIA listed on the Opportunity Register, the M&V practices governing those programs shall be followed. The energy savings value claimed as part of an incentivized project shall be recorded in the Opportunity Register.

1546 If the EPIA listed on the Opportunity Register will not be used to apply for a custom capital or deemed incentive, the effort expended to calculate energy savings for the EPIA shall be less than that of incentivized custom capital project and proportional to the level of expected energy savings. [Annex C – Bottom Up EPIA Calculation Effort](#) has more information on this topic.

1550 A required data point for each EPIA on the Opportunity Register is the EPIA implementation date. This data shall be determined by the implementer in conversation with the customer using reasonable considerations of the EPIA.

1553 The listed EPIA implementation date shall be used to delineate the temporal fraction of annualized energy savings that will be prorated and attributed to the current Reporting Period.

1555 Prorated energy savings for each EPIA that annualized energy savings were calculated for shall be determined based upon the listed implementation date and reasonable considerations such as seasonality and a principle of simplicity.

1558 Energy savings calculations for EPIA shall be documented and defendable. Documentation of the process used to determine EPIA energy savings does not have to be included in detail in the Opportunity Register but shall be referenced and linked so the calculations can be easily found using the EPIA identifiers listed on the Opportunity Register.

3.12.2.2 Determining if Energy Performance Improvement Actions were Identified and Planned Outside of a SEM Program Cycle.

1564 Pursuant to CPUC Decision 16-08-019, existing baseline conditions should be the basis for measurement of SEM savings for behavioral, retro-commissioning, and operational projects as well as capital projects. As such, EPIAs that were identified and planned for implementation outside of any SEM Program Cycle would be considered part of the existing baseline condition and resulting energy savings if the EPIA was implemented during any SEM Program Cycle shall not be reported as part of the SEM program.

3. Energy Modeling

1570 The implementer shall work with the customer to identify and list, as part of the Opportunity Register, EPIAs that were identified and planned outside of any SEM Program Cycle but not yet implemented. The timely collection of information and documentation regarding these EPIAs is critical, as time moves forward confidence in the information that new customer staff and memories about these EPIAs will become less reliable. Documentation collected as part of the ongoing SEM engagement is more trustworthy than that collected after the program engagement.

1576 For each listed EPIA that was identified outside any SEM Program Cycle, a determination shall be made if it was not only identified but also planned for implementation outside any SEM Program Cycle. Energy savings resulting from EPIAs that are both identified and planned outside of any SEM Program Cycle shall be included as part of the Non-SEM Program Energy Savings. Energy savings that ultimately result from EPIAs that were identified outside of any SEM Program Cycle but not planned for implementation shall be included as part of future SEM Program Energy Savings when the EPIA is implemented during a Reporting Period.

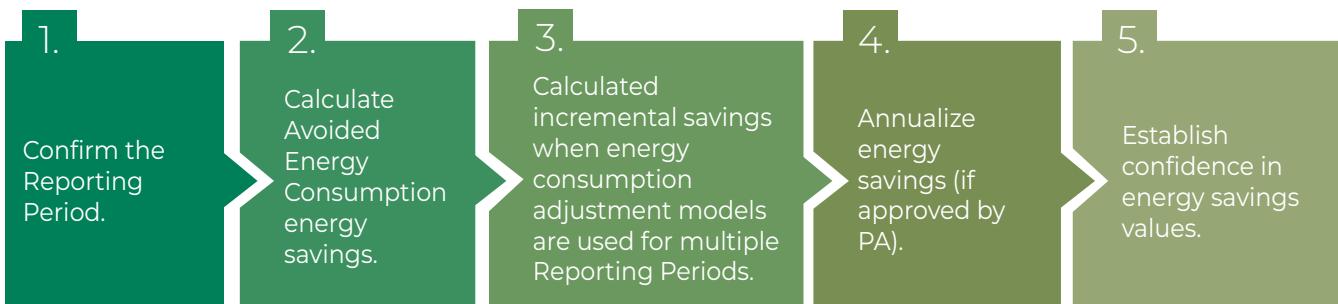
1583 The determination whether an EPIA was not only identified but also planned for implementation outside of any SEM Program Cycle shall be based on evidence of planning taking place within the 12 months prior to the SEM Program Cycle. Evidence older than 12 months indicates that while planning may have been started, EPIA implementation was stalled and the SEM program influenced its implementation. A, “wish-list,” or brainstorming list of EPIA ideas does not qualify as a planned EPIAs. Evidence of an EPIA being planned for implementation could include the following:

1589 ■ Budget allocated for the EPIA.
 1590 ■ Contracts signed related to EPIA implementation.
 1591 ■ Purchase orders issued or other indications of spending on the EPIA.
 1592 ■ Internal project manager assigned.
 1593 ■ Detailed EPIA implementation scope and schedule developed.

1594 EPIAs shall not be considered as identified and planned outside of an SEM Program Cycle

1595 If an EPIA was identified and planned outside of an SEM Program Cycle but the implementation was abandoned or postponed, the EPIA may be considered as “planned” during an SEM Program Cycle if it can be demonstrated that the EPIA implementation was accelerated (e.g., from scheduled for implementation in three years to scheduled for implementation in one year).

1599 The Opportunity Register shall be updated to indicate if each listed EPIA is determined to have been both identified and planned outside of any SEM Program Cycle or not. The rationale for the determination shall be recorded as part of the Opportunity Register.


1601 Identification of EPIAs for which energy savings were removed from each type of energy savings shall
 1602 be documented.

3. Energy Modeling

3.13 Calculating Energy Savings with Energy Consumption Adjustment Models

3.13.1 Process

1603 Energy savings of all types of energy shall be calculated and confidence established for the Reporting Period. In order to calculate M&V Boundary Energy Savings during a Reporting Period the following process shall be followed:

1608 Preparation of energy savings for regulatory reporting will be addressed in [Section 4](#).

3.13.2 Confirm the Reporting Period

1610 If not already done, a Reporting Period shall be established with a clear start and end date in accordance with [Section 2.1.1.2](#).

3.13.3 Calculating Avoided Energy Consumption Energy Savings

3.13.3.1 Calculating Interval Avoided Energy Consumption Energy Savings

1612 For each energy consumption adjustment model selected for use, Avoided Energy Consumption energy savings shall be calculated by applying the following equation using observed (actual) and estimated (predicted) energy consumption values for each interval of the Reporting Period.

$$\text{Energy Savings}_{\text{Reporting Period Interval}} = \text{Energy Consumption}_{\text{Modeled Reporting Period Interval}} - \text{Energy Consumption}_{\text{Observed Reporting Period Interval}}$$

3.13.3.2 Aggregating Interval Avoided Energy Consumption Energy Savings

1613 Avoided Energy Consumption energy savings for the entire Reporting Period are calculated by aggregating the Avoided Energy Consumption energy savings for each interval of the Reporting Period.

$$\text{Energy Savings}_{\text{Reporting Period}} = \sum_{i=1}^n \text{Energy Savings}_{\text{Reporting Period Interval } i}$$

1620 WHERE:

» n= number of intervals in the Reporting Period

3. Energy Modeling

1622 Energy savings calculated using the above equation are for the current Reporting Period as compared to the energy baseline and will be cumulative of all energy savings activities between the end of the Baseline Period and the current Reporting Period. [See Section 3.13.4](#) to determine incremental energy savings for the current Reporting Period.

1626 Regardless of requests to annualize energy savings Avoided Energy Consumption Energy Savings shall be documented for all Reporting Periods.

1628 **3.13.3.3 Visualizing Energy Savings**

1629 The cumulative sum of differences (CUSUM) calculation is an effective means of quantifying and visualizing energy savings for each type of energy during the Reporting Period.

1631 A CUSUM graph provides an illustration of the total savings achieved as compared to the energy baseline. A CUSUM graph for each type of energy for which energy consumption adjustment models are being used to calculate energy savings shall be developed and accompanied by a time-series plot of actual and predicted energy consumption.

1635 **NOTE:** A consensus whether to display CUSUM energy savings as a positive or negative value does not exist. Some PA sponsored SEM programs mandate increasing energy savings be displayed as a positive value while other programs mandate the opposite. Implementers and customers can display CUSUM energy savings as positive or negative so long as graphical representations of CUSUM energy savings clearly indicate the direction of increased energy savings. At its discretion the sponsoring PA may require one approach or the other.

1641 The implementation date of selected EPIAs listed on the Opportunity Register for which energy savings have been calculated shall be indicated on the CUSUM graph.

1643 Significant changes in CUSUM slope, positive and negative, should be investigated with analysis results noted as footnotes to the CUSUM graph.

1645 3.13.4 Establishing Confidence in Energy Savings

1646 Fractional savings uncertainty (FSU) analysis is a method for both assessing the validity of an energy consumption adjustment model at the development stage as well as judging the validity of energy savings realized from an energy consumption adjustment model.

1649 An FSU calculation shall be conducted for each M&V Boundary Energy Savings value calculated and used as the basis of an energy savings value to be reported.

1651 *The fractional uncertainty can be estimated with the general FSU equation as follows:*

$$\frac{\Delta E_{\text{save},m}}{E_{\text{save},m}} \rightarrow t \cdot \frac{1.26 \cdot CV \left(\left(\frac{n}{n} \right) \left(1 + \frac{2}{n} \right) \cdot \frac{1}{m} \right)^{\frac{1}{2}}}{F}$$

1652 WHERE:

- » t= t-statistic for desired confidence level
- » CV= coefficient of variation

3. Energy Modeling

- 1655 » n= number of observations in the Baseline Period
- 1656 » m= number of observations in the Reporting Period
- 1657 » F= observed savings fraction during Reporting Period
- 1658 » n'= number of independent Baseline Period observations
- 1659 » p= auto-correlation coefficient

$$n' = n \frac{(1-p)}{(1+p)}$$

- 1660 According to ASHRAE Guideline 14:2014, for monthly data an assumption that autocorrelation is 0 so n' is equal to n .
- 1661 When Reporting Period intervals are monthly or daily the improved FSU equation from Sun and Baltazar should be used which replaces the 1.26 coefficient in the above equation with a polynomial:

$$\frac{\Delta E_{\text{save},m}}{E_{\text{save},m}} = t \cdot \frac{(aM^2 + bM + c) \cdot CV \left(\left(\frac{n}{n'} \right) \left(1 + \frac{2}{n'} \right) \cdot \frac{1}{m} \right)^{\frac{1}{2}}}{F}$$

- 1664 **Where:**

- 1665 » M = number of months of Reporting Period data
- 1666 » a, b, and c are defined as follows:

Data Interval	Monthly	Daily
a	-0.00022	-0.00024
b	0.03306	0.03535
c	0.94054	1.00286

Table 5: FSU Equation Coefficients

- 1667 FSU is typically used to assess energy consumption adjustment models in one of two ways.

- 1668 ■ **At Model Development** – During the development of an energy consumption adjustment model, the projected FSU can be calculated based on a standard energy savings amount (typically 5%), and used to indicate how the energy consumption adjustment model is expected to perform at the standard savings rate and may help when selecting the final model out of the potential candidates.

3. Energy Modeling

1673 ■ **When assessing model-based energy savings** – Upon the completion of the Reporting
 1674 Period, the FSU can be assessed based on the actual realized energy savings. At this stage the
 1675 savings fraction used to calculate the FSU should be the total savings realized in the energy
 1676 consumption adjustment model before incremental savings are calculated or adjustments
 1677 are made for EPIAs realized outside of SEM.

1678 ASHRAE Guideline 14-2002, Section 5.3.2.2 specifies that the level of uncertainty must be less than 50% of
 1679 the annual reported savings, at a confidence level of 68%. The FSU threshold is not an absolute require-
 1680 ment, but can be used as guidance when assessing energy consumption adjustment model or savings
 1681 validity. The overall validity of the model using various modeling statistics and FSU should be considered
 1682 together when evaluating the acceptability of energy consumption adjustment model-based energy
 1683 savings values.

1684 The FSU threshold provides guidance for a general acceptable level of savings uncertainty, however,
 1685 when the FSU threshold is not met, energy savings may still be considered valid when other indicators of
 1686 valid energy savings are present. For an FSU value calculated with an energy consumption adjustment
 1687 model spanning nine or more months general FSU ranges and recommended treatment for assessing
 1688 energy savings are included below:

1689 ■ When FSU is less than 0.5, the reported energy savings value should be considered valid.

1690 ■ If the FSU falls between 0.5 and 1.0 of the reported energy savings, assess the pattern of the
 1691 CUSUM for a clear and observable savings trend and review the Implemented EPIAs on the
 1692 Opportunity Register to support validating energy savings.

1693 ■ If the FSU falls between 1.0 and 1.5 of the reported energy savings, this is indicator that the
 1694 energy savings may not be valid. In this case validating model-based energy savings may
 1695 require additional support. In addition to assessing the pattern of the CUSUM for a clear
 1696 and observable savings trend and reviewing the Implemented EPIAs on the Opportunity
 1697 Register, providing supporting bottom-up engineering calculations related to implemented
 1698 EPIAs to demonstrate the reasonableness of the savings determined by the model may be
 1699 appropriate. Note that in this situation, the bottom-up calculations may be very high level
 1700 and will not be used to specifically claim savings, but instead demonstrate that the savings
 1701 determined from the model are reasonable. The energy model will then be used to determine
 1702 final savings.

1703 ■ When the FSU is greater than 1.5, this is an indicator that the energy savings are not valid.

1704 **Note that FSU can be artificially inflated due to the limited number of data points in each
 1705 model.** This can occur when the number of data points included in the energy consumption
 1706 adjustment models is low (e.g. monthly interval model). Care should be taken when asses-
 1707 sing the FSU when it is expected to be artificially high; the above FSU ranges may not be
 1708 applicable or additional support to validate energy savings may be recommended. The table
 1709 in Annex F – Fractional Savings Uncertainty Scenarios, provides an additional example of how
 1710 FSU may vary depending on the model interval and level of energy savings

1711 **3.13.5 Calculating Incremental Energy Savings for Consecutive Reporting Periods
 1712 using the Same Energy Consumption Adjustment Model**

1713 Energy consumption adjustment models with a consistent Baseline Period can be used to calculate
 1714 energy savings for multiple Reporting Periods. Energy savings values for consecutive Reporting Periods
 1715 are by nature cumulative of energy savings resulting from actions taken in the current as well as prior
 1716 Reporting Periods.

1717 Incremental energy savings for the current Reporting Period shall be calculated if energy consumption
 1718 adjustment models are used for more than one Reporting Period as a way of “artificially re-baselining”
 1719 the energy consumption model.

3. Energy Modeling

1720 Incremental Site-wide Avoided Energy Consumption energy savings for the current Reporting Period
 1721 shall be calculated by subtracting the PA approved incremental energy savings from prior Reporting
 1722 Periods from the energy savings of the current Reporting Period energy savings. The prior Reporting
 1723 Period energy savings must be cumulative with all other prior Reporting Periods for which the same
 1724 energy consumption adjustment model and associated energy baseline have been used. [Annex H – Cu-](#)
 1725 [mulative and Incremental Savings Example](#) provides an example of how incremental Site-wide Avoided
 1726 Energy Consumption savings are determined when an energy consumption adjustment model is used
 1727 for multiple years.

1728 If an energy consumption adjustment model is re-baselined (a new energy baseline established and
 1729 new energy consumption adjustment model(s) developed) any savings achieved prior to the new Base-
 1730 line Period do not need to be removed from energy savings calculations made for the current Reporting
 1731 Period as they will have been incorporated into the new model. Energy savings achieved during the Ba-
 1732 seline Period must be accounted for following the guidance in [Section 3.5](#).

1733 3.13.6 Annualization of Energy Savings

1734 Annualization of M&V Boundary Energy Savings shall only be performed when annualization will de-
 1735 monstrably improve the meaning and accuracy of energy savings and with PA approval. [See Section 1.4](#)
 1736 for additional discussion on annualization.

1737 If, in this case, a top-down approach will be attempted in the subsequent Reporting Period, a new Bas-
 1738 line Period that encompasses the current Reporting Period shall be established along with new energy
 1739 consumption adjustment model(s). Appropriate adjustments to the new Baseline Period shall be made
 1740 to account for any known EPIAs implemented during that time.

1741 *If annualization of energy savings is authorized by the PA, the following process should be followed:*

1742 3.13.6.1 Considerations for Seasonality

1743 When the distribution of relevant variables used for a particular energy consumption adjustment
 1744 model is expected to be markedly different throughout the Reporting Period, this distribution must
 1745 be considered when annualizing energy savings. If the ratio of higher to lower expected production
 1746 level is not anticipated to stay seasonally consistent, the Reporting Period can be divided into two or
 1747 more distinct periods for a given energy consumption adjustment model. This method is generally
 1748 only feasible for daily models. There must be a minimum number of intervals (normally 30 for daily
 1749 models) in each period to justify the split. Use of this method shall be documented.

1750 3.13.6.2 Annualization Period

1751 Annualization of energy savings is dependent upon extrapolating energy savings calculated during
 1752 a short time period (Annualization Period) established towards the end of the Reporting Period. This
 1753 time period, the Annualization Period, shall be at least 90 and no more than 120 consecutive days wi-
 1754 thin the final 9 months of the Reporting Period.

1755 If an energy consumption model has been developed for a time period shorter than 90 days annuali-
 1756 zation shall not be performed and Avoided Energy Consumption values should be used.

1757 Annualization Periods longer than 120 days can be utilized depending on the variability of the site but
 1758 shall be wholly within the final 9 months of the Reporting Period. If the customer's operation is highly
 1759 seasonal, and only has one model, a longer Annualization Period that addresses seasonal impact on
 1760 varying energy savings rates should be selected. The rationale for selecting an Annualization Period
 1761 duration longer than 120 days shall be documented. The annualization period shall be reflective of
 1762 the impact of relevant EPIAs. Variation from the 90 and 120 day requirements to accommodate EPIAs
 1763 shall be approved by the PA and documented.

3. Energy Modeling

1764 Ideally, the end of the Annualization Period should be established as close to the end of the Reporting Period as possible to reflect the full impact of the activities taken during the Reporting Period. The rationale for ending the Annualization Period prior to the end of the Reporting Period shall be documented.

1768 **3.13.6.3 Confirming Data Quality within the Annualization Period**

1769 Data collected during the Annualization Period should be reviewed in detail to detect anomalous values and account for situations that did not happen in the Baseline Period.

1771 Individual data intervals in the Annualization Period should be flagged if a relevant variable data point is 10% beyond the bounds of the energy baseline data set.

1773 **These points may be handled in one of three ways:**

1774 ■ **Include the point without alteration.**

1775 » This is appropriate if the residual for the point is not an outlier compared to the representative population of residuals (as determined by the implementer).

1777 ■ **Exclude the point.**

1778 » This is appropriate if the residual of the outlier point is an outlier compared to the overall population of residuals. In this case the energy savings from this outlier point would have an outsized effect on the energy savings measurement.

1781 ■ **Shift the Annualization Period.**

1782 » This is appropriate if the interval in question is towards the end of the current Annualization Period and shifting the period will omit the interval in question while otherwise maintaining the integrity of the Annualization Period.

1785 ■ **Remodel**

1786 » This is appropriate if no Annualization Period can be established during which a valid energy savings value can be calculated.

1788 If an outlier is detected, qualitative justification based on visual representation of the data and quantitative justification should be provided, rationalizing the selected approach used to address the outlier. The selected approach should be documented.

1791 **3.13.6.4 Calculating annualized energy savings**

1792 **Annualized energy savings shall be calculated using the following equation:**

$$\text{Annualized Energy Savings} \rightarrow \left(\sum_{i=1}^n (\text{Energy Savings})_i \right) \times \left(\frac{n_{\text{year}}}{n} \right)$$

1793 **WHERE:**

1794 » n = number of intervals in the Annualization Period

1795 » n_{year} = 365 days represented in the intervals being used

1796 With energy savings being calculated using the equation in [Section 3.13.3.1](#).

4 Reviewing and Reporting of Energy Savings 60

4.1 Preparing Energy Savings for Regulatory Reporting	60
4.1.1 General	60
4.1.2 Energy Savings Terminology	61
4.1.3 Requirements for Claiming Savings via Top-Down Method	62
4.1.4 Requirements for Claiming Energy Savings via Bottom-Up Method	62
4.1.5 Considerations for Non-utility Energy (aka Non-IOU Fuels)	63
4.1.6 Unexpected Energy Savings	65
4.2 Calculating Demand Savings	66
4.3 Greenhouse Gas Savings	66
4.3.1 Sources of GHG Emissions	67
4.3.2 GHG Emission Scopes	68
4.3.3 Care When Selecting Methods to Determine Energy-related GHG Emissions Reductions	68
4.3.4 Methods, Guides, and Protocols Commonly used to Establish GHG Inventories and Emissions Reductions	69
4.3.5 SEM Program GHG Reduction Calculation Requirements	69
4.4 Mid-Year Review of the M&V Process	70
4.4.1 General	70
4.4.2 Mid-year Review Items	70
4.4.3 Mid-year Review Tools	72
4.5 SEM Reporting Period Performance Report Preparation Checklist	72
4.5.1 SEM Reporting Period Performance Report Requirements	72

4. Reviewing and Reporting

4 Reviewing and Reporting of Energy Savings

1797 Reporting requirements of the M&V Guide apply to each site enrolled in the SEM program. If a site has more than one M&V boundary, a single report is to be completed but must contain information on all associated M&V boundaries. As customers may have multiple sites enrolled in the SEM program, a summary report for all of the customer's multiple sites may optionally be developed in addition to the individual site reporting requirements of the M&V Guide.

4.1 Preparing Energy Savings for Regulatory Reporting

4.1.1 General

1803 For the current Reporting Period, Avoided Energy Consumption energy savings values shall be calculated for each type of energy included in the M&V process using one of two methods:

- 1807 1. Energy consumption adjustment models, if the development of valid energy consumption models is successful.
- 1808 2. Aggregation of energy savings from individual EPIAs listed on the Opportunity Register.

1810 Annualized energy savings shall only be reported with PA permission per the requirements of this M&V Guide.

1812 For each type of energy, if valid energy consumption adjustment models were not developed and used to calculate energy savings then the bottom-up method of aggregating energy savings resulting from the implementation of EPIAs listed on the Opportunity Register shall be reported for that type of energy.

1815 If for a given type of energy one or more energy consumption adjustment models were developed for part of the Reporting Period (e.g. during seasonal operations for a resort or food producer) but one or more energy consumption adjustment models could not be developed for the other part of the Reporting Period, then energy savings may be reported for that other part of the Reporting Period with either a top-down or bottom-up method.

1820 Energy savings for different types of energy may be reported using different methods for the same customer (e.g. natural gas energy savings reported using a bottom-up approach and electricity energy savings reported using a top-down approach).

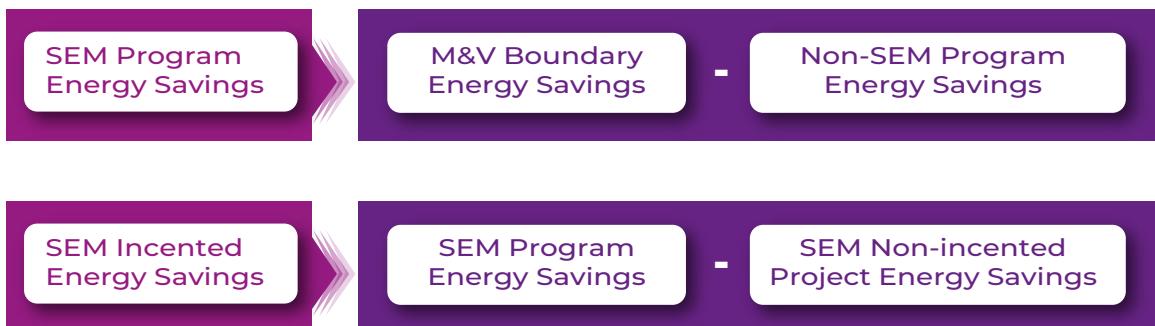
1823 As described in more detail in [Section 1.4](#): For each type of energy included in the M&V process, annualization of top-down based energy savings may be performed only in the case when an energy consumption adjustment model is being retired or a customer will not be participating in the SEM program after the current Reporting Period. Bottom-up estimates will be prorated based on the installation date.

1827 When communicating with the customer, PA, and CPUC case shall be taken to label energy savings as either "avoided energy consumption energy savings" or "annualized energy savings." The label "energy savings" may be used with the implicit assumption it refers to energy savings determined on an Avoided Energy Consumption basis.

1831 The SEM Reporting Period Performance Report, Opportunity Register, and Energy Data and Performance Tracking Tool shall be provided to the CPUC as requested when reporting energy savings. The CPUC may have additional requests for data though the SEM Reporting Period Performance Report should be adequate to evaluate if the energy savings reported conform to the requirements of this M&V Guide.

1835 Program cost-effectiveness shall be based upon SEM Program Energy Savings.

1836 This M&V Guide does not consider regulatory reporting aimed to evaluate the development of customer EnMS. As the M&V process is a component of a functional EnMS, requests pertaining to the customer's understanding, activities, and leadership of parts of the M&V process may be made by the CPUC.


4. Reviewing and Reporting

4.1.2 Energy Savings Terminology

1839 The below listing defines types of energy savings that will be referenced in the process of appropriately removing different types of energy savings from M&V Boundary Energy Savings for each type of energy.

M&V Boundary Energy Savings:	Non-SEM Program Energy Savings:	SEM Program Energy Savings:	SEM Non-incented Project Energy Savings:	SEM Incented Energy Savings:
1 Incremental, energy savings for a given type of energy resulting from the aggregation of energy savings from each energy consumption adjustment model developed for the same energy type. These “modeled” savings encompass all energy saving types listed below.	2 Energy savings calculated for EPIAs identified and planned outside of any SEM Program Cycle and implemented during the current Reporting Period, whether receiving other incentives or not.	3 M&V Boundary Energy Savings minus Non-SEM Program Energy Savings. This value is the combination of BRO, capital, and deemed projects that were influenced by SEM.	4 Energy savings for an EPIA (project) identified during any SEM Program Cycle and implemented during the current Reporting Period that is to receive an incentive from a PA program other than the SEM program. PA custom capital M&V requirements (ex-ante, ex-post, etc.) may apply.	5 SEM Program Energy Savings minus SEM Non-incented Project Energy Savings. At the discretion of the PA, this energy savings value can be used to pay SEM performance incentives.

1842 *Mathematically:*

1843 The figure below illustrates the relationship of the different types of energy savings.

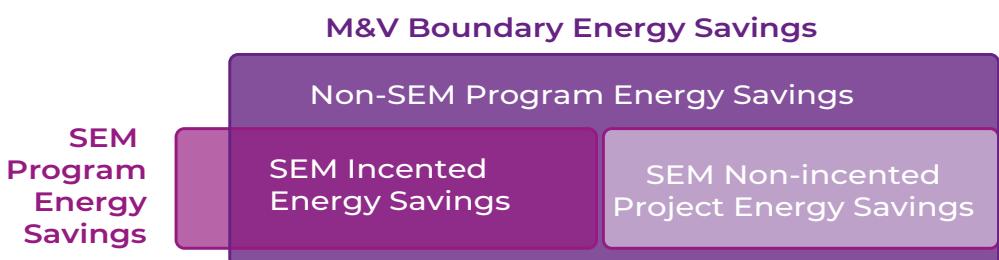


Figure 6: Relationship Between Different Type of Energy Savings

4. Reviewing and Reporting

4.1.3 Requirements for Claiming Savings via Top-Down Method

1844 If one or more valid energy consumption adjustment models were created and used to calculate energy savings for a given type of energy, then incremental Avoided Energy Consumption energy savings for the current Reporting Period shall be used as the basis of M&V Boundary Energy Savings.

1845
1846
1847 If the PA has provided explicit permission to report annualized energy savings values, then all other energy savings types shall also be used and reported on an annualized basis (including those related to individual EPIAs).

1848
1849
1850 Incremental energy savings shall be reported rather than energy savings cumulative of multiple Reporting Periods.

1851
1852 If incremental energy savings for a given type of energy are calculated for the purposes of regulatory reporting, energy savings resulting from EPIAs implemented during the Reporting Period that are incentivized by another PA program or were identified and planned outside of participation in any SEM Program Cycle shall be removed from the energy savings value reported.

1853
1854
1855
1856 The process used to remove energy savings resulting from EPIAs implemented during the Reporting Period that are incentivized by another PA program or were identified and planned outside of participation in any SEM Program Cycle shall be documented. [See Section 3.12.2.2](#) how to determine if an EPIA would be included or excluded.

1857
1858
1859
1860 M&V Boundary Energy Savings, Non-SEM Program Energy Savings, SEM Program Energy Savings, SEM Non-incented Project Energy Savings, and SEM Incented Energy Savings shall be calculated for each type of energy.

4.1.4 Requirements for Claiming Energy Savings via Bottom-Up Method

1861 If approved by the PA, then a bottom-up approach of calculating energy savings for a given type of energy may be used for the Reporting Period. This bottom-up approach is only allowed if one or more energy consumption adjustment models per the requirements of this M&V Guide cannot be developed, used to calculate energy savings, and used to report energy savings to the PA for a given type of energy.

4.1.4.1 Determining if Avoided Energy Consumption or Annualized Energy Savings Should be Reported

1862 Only energy savings for EPIAs listed on the Opportunity Register, and assessed to not have been identified and planned outside of a PA sponsored SEM program shall be included in the bottom-up calculation. Not all EPIAs for which energy savings have been calculated must be included in the bottom-up calculation. Reasons to not include energy savings from specific EPIA may include lack of confidence in the estimated energy savings value and uncertainty that the implemented EPIA will remain in place during the SEM Program Cycle.

1863 If the PA has not given explicit permission to report annualized savings, then energy savings shall be reported on an Avoided Energy Consumption basis. Only the prorated portion of the annualized EPIA energy savings for the current Reporting Period shall be reported to the PA. The balance of the annualized energy savings for the EPIA shall be claimed in the subsequent Reporting Period without modification to the originally calculated energy savings. If the customer does participate in the SEM program in the subsequent year, the balance of the annualized energy savings for the EPIA may still be claimed in the subsequent year with no associated cost of program implementation.

1864 If the PA has given explicit permission to report annualized energy savings, then energy savings shall be reported on an annualized basis.

4. Reviewing and Reporting

4.1.4.2 Aggregating EPIA Energy Savings

1886 Reporting Period energy savings can be calculated from the aggregation of energy savings resulting from the implementation of individual EPIAs, a “bottom-up approach.”

1887 If a bottom-up calculation is made in addition to development and use of a valid energy consumption adjustment model for the same type of energy, the resulting aggregated energy savings can be used as a “gut check” in comparison to energy savings calculated with energy consumption adjustment models.

1888 As part of a PA sponsored SEM program, energy savings calculated from the two energy savings determination methods (top-down and bottom-up) shall not be reconciled as the foundational assumptions of the two methods are incongruent.

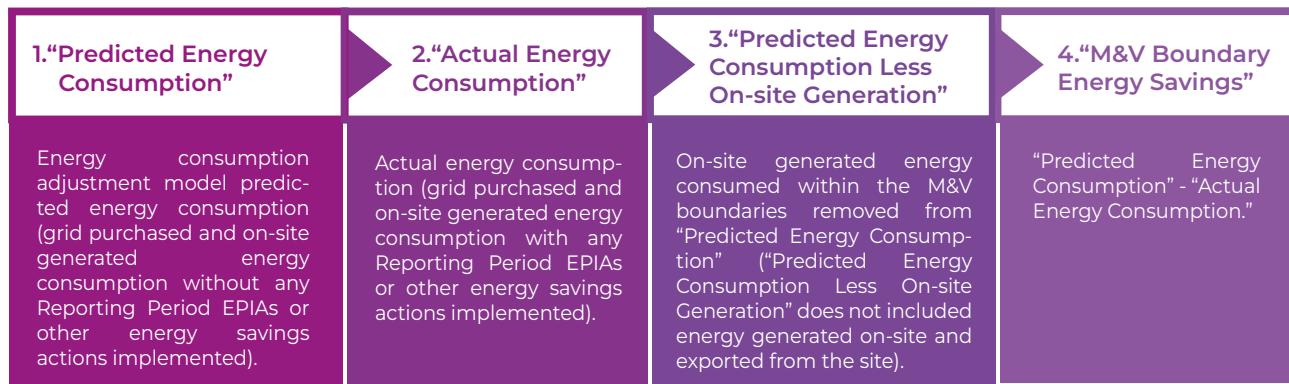
1889 If the bottom-up aggregation of energy savings approach to calculating energy savings is used to report energy savings, it should be done with the understanding that evaluation of energy savings for individual EPIA listed on the Opportunity Register may occur. Energy savings for each EPIA included in the submitted energy savings report to the CPUC shall be developed using the guidance of [Annex C – Bottom Up EPIA Calculation Effort](#). Evaluation of bottom-up savings shall not be conducted to the level of rigor and specificity as is conducted for projects that are part of custom capital incentive programs. The evaluation shall be a check of the reasonable nature of the EPIA energy savings calculation approach, recognizing the requirements of this M&V Guide direct that a detailed M&V plan for each EPIA is not to be developed.

4.1.5 Considerations for Non-utility Energy (aka Non-IOU Fuels)

1905 The implementer shall be responsible for ensuring the customer pays a public purpose program surcharge for each type of energy for which energy savings will be reported and that the reported energy savings value is attributed to energy for which the public purpose program surcharge was paid.

1906 Energy savings shall only be reported when they are coincident with time intervals when the customer is purchasing power from the grid.

1907 The implementer shall be responsible for adjusting energy savings values to account for PA and CPUC requirements pertaining to claiming energy savings for sites that have on-site energy generation and non-utility (non-IOU) supplied energy/fuel (both referred to as non-utility energy in this M&V Guide). In general, energy savings claims should only support impacts to PA supplied energy. If a site generates energy and exports excess energy to the grid, those time periods shall be excluded from savings claims for that type of energy.


1908 In general, the CPUC November 6, 2015 published, “Energy Efficiency Savings Eligibility at Sites with non-IOU Supplied Energy Sources – Guidance Document” version 1.1 should be consulted when considering if non-utility energy will affect reportable energy savings.

1909 Non-IOU fuels must be able to be accounted for as they contribute to the M&V boundary itself. If a non-IOU fuel is split between multiple M&V boundaries it may be difficult or even impossible to determine how much non-IOU fuels contribute to the M&V boundary without additional submetering.

4.1.5.1 Top-Down Method

1910 For each interval of the energy consumption adjustment model (e.g. if the model is developed on a monthly basis the evaluation of non-utility energy shall be conducted on a monthly basis) determine:

4. Reviewing and Reporting

1926
1927
1928
1929

For each interval of the energy consumption adjustment model, use the below logic to determine if reportable energy savings need to be adjusted to account for non-utility energy. Each logic sets (i.e. a, b, and c) below is provided in a full statement using the terminology from above as well as in mathematical form using the numbered items (i.e. 1, 2, 3, and 4) from above.

1930
1931
1932
1933

a) If "M&V Boundary Energy Savings" are less than the "Predicted Energy Consumption Less On-site Generation" and "M&V Boundary Energy Savings" are greater than 0, then M&V Boundary Energy Savings for that interval do not need to be adjusted for non-utility energy and "M&V Boundary Energy Savings" are the originally calculated "M&V Boundary Energy Savings."

If $4 < 3$ and $4 > 0$

then 3 is the interval energy savings not adjusted for non-utility energy

1934
1935
1936
1937

b) If "M&V Boundary Energy Savings" are greater than the "Predicted Energy Consumption Less On-site Generation" and "M&V Boundary Energy Savings" are greater than 0, then M&V Boundary Energy Savings for that interval need to be adjusted for non-utility energy and "M&V Boundary Energy Savings" shall be the "Predicted Energy Consumption Less On-site Generation" value.

If $4 > 3$ and $4 > 0$

then 4 is the interval energy savings adjusted for non-utility energy

1938
1939
1940

c) If neither of the above are true then "M&V Boundary Energy Savings" shall not be adjusted for non-utility energy and "M&V Boundary Energy Savings" are the originally calculated "M&V Boundary Energy Savings."

If a) and b) are not true then 4 is the interval energy savings not adjusted for non-utility energy

1941
1942

Note that energy exports shall be ignored such that grid purchased energy is not reduced by exported energy.

1943

■ Generally, natural gas is not exported to the grid.

1944
1945

■ This applies when converting electricity export from a generator that uses natural gas or bio-fuel to generate electricity.

4. Reviewing and Reporting

1946
1947

Graphical representation of when energy savings would be reduced due to non-utility energy is illustrated below in Figure 7.

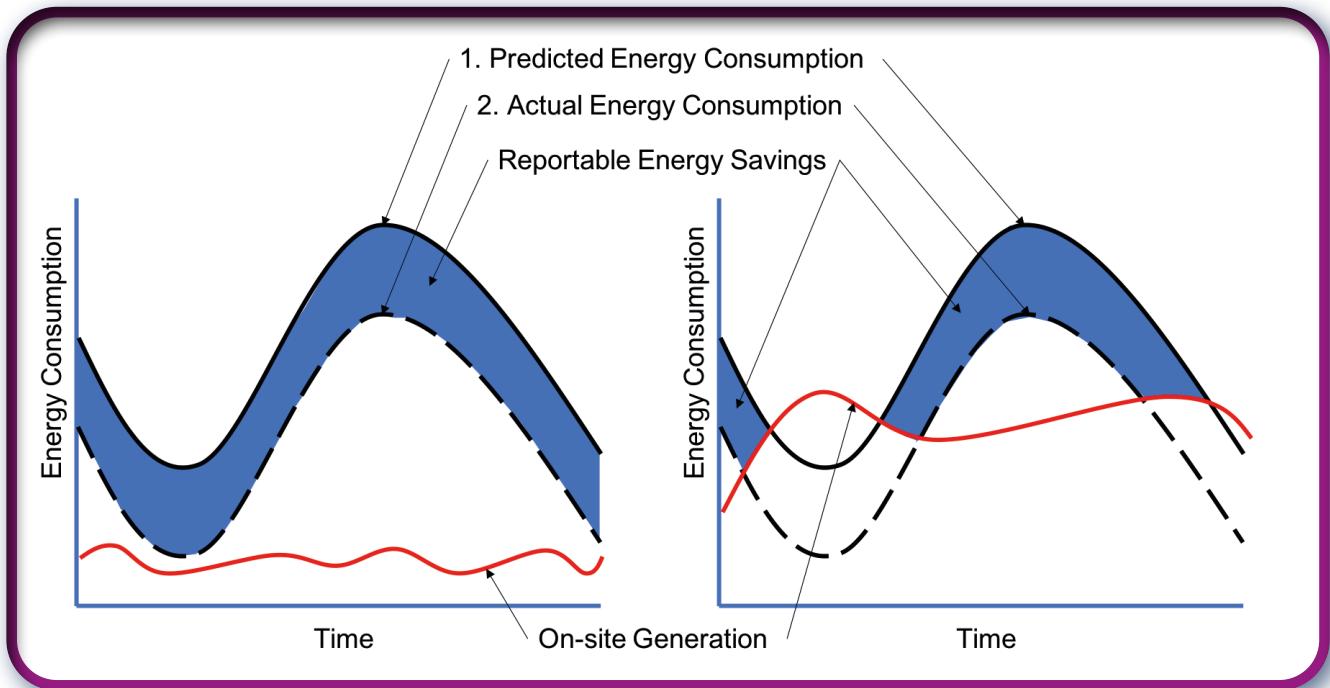


Figure 7: Illustration of when energy savings are reduced by non-utility energy

1948 **4.1.5.2 Bottom-Up Method**

1949 When energy savings are being determined with a bottom-up approach, the guidance of the CPUC
1950 November 6, 2015 published, “Energy Efficiency Savings Eligibility at Sites with non-IOU Supplied Energy
1951 Sources – Guidance Document” version 1.1 shall be followed to determine the effect and accounting of
1952 non-utility energy. The PA shall confirm appropriate application of the CPUC guidance.

1953 When conducting a non-IOU energy analysis for energy savings determined from a bottom-up method,
1954 the non-IOU energy analysis should be conducted and applied to the energy savings before the ener-
1955 gy savings are pro-rated between the current and subsequent Reporting Periods. The non-IOU energy
1956 analysis should not be replicated in the subsequent Reporting Period.

1957 **4.1.6 Unexpected Energy Savings**

1958 Unexpected energy savings refer to either positive or negative savings calculated using energy con-
1959 sumption adjustment models that are counter to anticipated results and not reasonably attributable to
1960 the SEM program.

1961 Unexpected savings may be the result of:

- 1962 ■ External factors outside of SEM program influence (e.g., market dynamics, workforce changes,
1963 societal disruptions).
- 1964 ■ Site activities or operational changes unrelated to SEM program.

1965 In cases where unexpected savings—positive or negative—are calculated the implementer shall inves-
1966 tigate and document the likely causes and include them in the SEM Reporting Period Performance
1967 Report.

4. Reviewing and Reporting

1968 If negative savings are calculated and no EPIAs were implemented during the Reporting Period for that energy type, the energy savings shall be reported as zero.

1969

1970 If negative savings are calculated and EPIAs were implemented during the Reporting Period and an adequate investigation and documentation of possible reasons for the negative savings was conducted showing the SEM program was not responsible for the results, the energy savings shall be reported as zero and a bottom-up approach may be used.

1971

1972

1973

1974 If positive unexpected savings are calculated using an energy consumption adjustment model that cannot be credibly attributed to SEM-related efforts then these savings shall not be claimed. Alternative M&V boundaries or a bottom-up approach may be considered following the requirements of this M&V Guide. A reconciliation of unexpected energy savings from the original energy consumption model with energy savings calculated based on individual implemented EPIAs shall not be conducted given the incompatible approaches in determining energy savings.

1975

1976

1977

1978

1979

1980 If EPIAs are implemented that knowingly increase energy consumption for a particular energy type related to that EPIA (e.g., installing an electric heater in place of a gas unit), then the negative energy savings associated with these actions shall be reported. These are considered intentional trade-offs within the SEM program scope and must be included in energy savings reporting. Note that this analysis is not meant to be related to NREs or interactive effects within a site but for EPIAs focused on switching energy types.

1981

1982

1983

1984

1985

1986 In all cases, the guiding principle is that unexpected savings shall only be reported (positive or negative) if there is clear, credible evidence that they were caused by SEM program-related actions. Otherwise, they shall be excluded or set to zero in the reported results. The decision to report zero savings must be approved by the PA and clearly justified in the program documentation.

1987

1988

1989

1990 4.2 Calculating Demand Savings

1991 Electricity demand savings can be difficult to determine and can be done in multiple ways.

1992 In 2021, the CPUC evaluator created an Excel based SEM Demand Savings Calculator that uses an input of claimed electricity savings and existing load shapes to determine demand savings. This CPUC-developed demand savings tool shall be the default approach to determining reportable electricity demand savings. The CPUC-developed tool may be updated by the CPUC at its discretion.

1993

1994

1995

1996 Alternative methods to determining electricity demand savings shall only be used if approved by the PA.

1997 Alternative methods of determining electricity demand savings using energy savings determined from energy consumption adjustment models shall only be conducted when the model is based on hourly or more frequent interval data to calculate demand savings. This hourly or more frequent interval data requirement may not align with the interval frequency with which energy consumption adjustment models were developed.

1998

1999

2000

2001

2002 The shift towards Total System Benefits will affect how demand savings are valued and potentially determined. [Annex H – Total System Benefits](#) offers a brief introduction to the concept.

2003

2004 4.3 Greenhouse Gas Savings

2005 Greenhouse Gas (GHG) emissions are regulated by the California Air Resources Board (CARB). Many companies have voluntarily joined decarbonization programs with GHG emission reduction targets and reporting requirements. A wide variety of methods exist for establishing a GHG inventory and for reporting GHG emissions reductions. Reporting GHG emissions reductions is currently not a regulatory requirement of this M&V Guide though changes to CPUC policies are being made to better align with GHG

2006

2007

2008

2009

4. Reviewing and Reporting

2010 related objectives established by the California legislature and governor. The shift towards Total System Benefits will affect how GHG emission savings are valued and potentially determined. [Annex H – Total System Benefits](#) offers a brief introduction to the TSB concept.

2013 The calculation of GHG emissions itself is not a requirement of this M&V Guide but guidance is provided here as the likelihood of interest in GHG emissions by the PA and customer is growing. If GHG emissions 2014 are calculated as part of the PA sponsored SEM program the requirements (shall statements) of this 2015 section shall be followed. 2016

2017 4.3.1 Sources of GHG Emissions

2018 In the US, nearly 80% of all GHG emissions are energy related.⁵ For organizations, these energy-related 2019 GHG emissions can come from:

- Direct GHG emissions from the combustion of energy (e.g. natural gas used in process heating) at the site.
- Indirect GHG emissions that come from consumption of delivered energy (e.g. electricity consumed) at the site.
- Indirect GHG emissions that come from energy consumed by activities (e.g. outsourced production processes) throughout an organization's value chain.

2026 Additionally, other gaseous species such as those from refrigeration system and process emissions contribute to climate change. These non-energy related GHG emissions can be managed with an energy 2027 management system but are not the focus of this M&V Guide. This M&V Guide can be used to inform the 2028 determination of energy-related GHG emission reductions. 2029

2030 The process of energy accounting (collection of energy consumption data by energy type) and energy 2031 savings determined via top down or bottom-up methods can aid in the determination of energy-related 2032 GHG emissions reductions.

2033 The purpose for determining energy-related GHG emissions reduction should be established. This purpose 2034 will inform the scope and method by which energy-related GHG emissions should be determined.

⁵Intergovernmental Panel on Climate Change (IPCC), Climate Change 2022 Impacts, Adaptation, and Vulnerability Summary for Policymakers, Accessed May 2022, https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_FinalDraft_FullReport.pdf

4. Reviewing and Reporting

4.3.2 GHG Emission Scopes

2035 The GHG Protocol's, "Corporate Accounting and Reporting Standard," defines three categories, or "scopes" of direct and indirect emissions that are widely used and should be considered:⁶

Scope 1 Emissions: Direct GHG emissions.

Direct GHG emissions occur from sources that are owned or controlled by the organization, for example, emissions from combustion in owned or controlled boilers, furnaces, vehicles, etc.; emissions from chemical production in owned or controlled process equipment.

Scope 2 Emissions: Electricity indirect GHG emissions.

Scope 2 accounts for GHG emissions from the generation of purchased electricity, steam, heat, or cooling consumed by the organization. Purchased electricity is defined as electricity that is purchased or otherwise brought into the organizational boundary of the company. For purchased energy, scope 2 emissions physically occur at the site where electricity, steam, heat, or cooling is generated.

Scope 3 Emissions: Other indirect GHG emissions.

Scope 3 is an optional reporting category that allows for the treatment of all other indirect emissions. Scope 3 emissions are a consequence of the activities of the organization, but occur from sources not owned or controlled by the organization. Some examples of scope 3 activities are extraction and production of purchased materials; transportation of purchased fuels; and use of sold products and services.

2038 For most organizations, inclusion of scope 1 and scope 2 emissions is the minimum that should be considered when determining the EnMS scope and boundaries. Data collected by following the processes of this M&V Guide may be of use in determining scope 3 emissions, but this M&V Guide focuses on guidance related to scope 1 and 2 emissions.

4.3.3 Care When Selecting Methods to Determine Energy-related GHG Emissions Reductions

2044 This M&V Guide was not designed to determine a greenhouse gas (GHG) emission inventory or GHG emission reductions. This M&V Guide reports normalized energy savings which can be used with GHG emission factors for specific energy types to establish a normalized energy-related GHG emissions reduction value, an indicator of GHG performance improvement.

2048 Use of normalized energy savings to determine GHG emissions reduction values is not conformant with most GHG reporting methods and does not convey actual GHG emissions reductions. Major GHG inventory and reporting protocols, such as the World Resources Institute's and World Business Council for Sustainable Development's GHG Reporting Protocol⁷, provide guidance on how to establish a GHG emissions inventory for a given period of time. This inventory is not normalized for variables such as occupancy, production, or weather. The difference between GHG emission inventories for two different time periods can be used to establish if GHG emissions have been reduced on an absolute basis. It is worth noting these absolute basis methods of reporting GHG inventories and reductions are dominant in decarbonization programs and policies.

2057 A recent study of 86 industrial facilities was conducted by the Lawrence Berkeley National Laboratory to understand variation in calculated GHG emissions reduction using an SEM M&V type approach (the SEP M&V Protocol) compared to one of the most widely used GHG inventory reporting protocols from WRI, the GHG Reporting Protocol. The analysis showed significant deviations in estimates for GHG reductions, primarily because the SEP M&V method uses regression analysis to normalize relevant variables, while the WRI methods rely on absolute energy consumption. The variation of results between the two

⁶World Business Council for Sustainable Development and World Resources Institute, The Greenhouse Gas Protocol – A Corporate Accounting and Reporting Standard, March 2004

⁷WRI, Greenhouse Gas Protocol, <https://www.wri.org/initiatives/greenhouse-gas-protocol>

4. Reviewing and Reporting

2063 approaches ranged from negligible to more than 500%. This variance was largely driven by conditions
 2064 when relevant variables used in the development of energy consumption adjustment models was high
 2065 between the Baseline Period and Reporting Period. Lower variance in the relevant variables reduced
 2066 the difference in reported GHG emissions. Suggestion to use energy consumption model based GHG
 2067 savings as a proxy for absolute emissions reduction when relevant variable variance is low is faulty. This
 2068 approach inherently and needlessly introduces error when a viable alternative method exists and can
 2069 make use of already collected energy data. Other major GHG emissions reduction protocols such as the
 2070 Science Based Targets initiative do not allow for normalized GHG emissions reporting at this time.

2071 As GHG emissions reduction protocols such as the GHG Reporting Protocol and the regulatory reporting
 2072 required by CARB does not allow for normalized GHG emissions reporting care should be taken to con-
 2073 textualize and properly label GHG emissions reductions determined using normalized energy savings
 2074 values. Only GHG emissions reductions conforming to a major GHG emissions reduction protocol should
 2075 be presented as "GHG emissions reductions" or with other similar labels.

2076 4.3.4 Methods, Guides, and Protocols Commonly used to Establish GHG Inventories 2077 and Emissions Reductions

2078 Users of the M&V Guide wishing to establish GHG inventories and emissions reductions should be fami-
 2079 liar with methods, guides, and protocols used to establish GHG inventories and emissions reductions.
 2080 As the legislatively authorized regulator of GHG emissions, CARB mandates reporting of GHG emissions
 2081 and participation in California's cap and trade program depending on a site's GHG emissions. As report-
 2082 ing requirements and regulations may change, implementers should stay aware of current CARB poli-
 2083 cies. Currently CARB requires reporting of Scope 1 emissions only on an absolute basis.⁸⁹

2084 Implementers and customers alike should be aware of other relevant GHG inventory and emissions re-
 2085 duction program and policies. These include the WRI GHG Reporting Protocol, Science Based Targets
 2086 initiative,¹⁰ and the U.S. Environmental Protection Agency's Center for Corporate Climate Leadership.¹¹

2087 4.3.5 SEM Program GHG Reduction Calculation Requirements

2088 The implementer shall assess if the customer wishes to discuss GHG inventories, reporting, reduction
 2089 calculations, or other related topics. This conversation may be part of the larger SEM program engage-
 2090 ment.

2091 If the customer would like to discuss GHG related M&V the implementer shall document if the customer
 2092 has an existing GHG emissions reduction target and if they are required or planning to use a specific
 2093 GHG emissions reduction reporting mechanism.

2094 The implementer shall work with the customer to understand their current and future GHG related pro-
 2095 gram engagements, both voluntary and required.

2096 The implementer shall discuss different methods of creating GHG inventories, reporting, and reduction
 2097 calculations with the customer.

2098 If GHG emissions reductions are calculated as part of a PA sponsored SEM program the implemen-
 2099 ter shall calculate and clearly and consistently label energy-related GHG emissions reductions as being
 2100 "normalized emissions reductions," or "absolute emissions reductions," and include description of the
 2101 method and scopes included in the reported value.

⁸ California Air Resources Board, Mandatory GHG Reporting – Guidance Documents, Accessed May 2022, <https://ww2.arb.ca.gov/mrr-guidance>

⁹ California Air Resources Board, Cal e-GGRT, Accessed May 2022, <https://ssl.arb.ca.gov/Cal-eGGRT/login.do>

¹⁰ Science Based Targets initiative (SBTi), Set a Target, Accessed May 2022, <https://sciencebasedtargets.org/set-a-target>

¹¹ United States Environmental Protection Agency, EPA Center for Corporate Climate Leadership, Accessed May 2022, <https://www.epa.gov/climateleadership>

4. Reviewing and Reporting

2102 In addition to customer interest in calculating GHG reduction, the implementer shall be aware of GHG
 2103 reduction calculation methods and requirements that would be used as part of future TSB determina-
 2104 tion. As GHG reporting relative to TSB is not specified at the time of this M&V Guide publication the
 2105 implementer shall work with the PA to understand what changes and requirements develop over time.

2106 4.4 Mid-Year Review of the M&V Process

2107 4.4.1 General

2108 The Mid-year Review is required in order to ensure the PA has insights to the progress and status of in-
 2109 dividual sites in the SEM program and demonstrate program engagement to evaluators. Materials used
 2110 as part of the Mid-Year Review should be developed so they become components of the SEM Reporting
 2111 Period Performance Report.

2112 The Mid-Year Review shall occur approximately four to six months after the start of an SEM Program
 2113 Cycle and then again approximately 12 months after. The implementer may request to delay the first
 2114 Mid-Year Review with PA permission. Reasons to delay the first Mid-Year Review may include timing of
 2115 SEM program delivery and challenges and data availability to develop energy consumption adjustment
 2116 models.

2117 All required items listed below shall be presented if available. If a required item is not available, docu-
 2118 mented justification of why it is not available shall be provided. Such justification may relate to customer
 2119 participation, continued efforts to develop valid energy consumption adjustment models, etc. If valid
 2120 energy consumption adjustment models have not yet been developed but are still being attempted
 2121 the current status of model development shall be reported in addition to the reasons for development
 2122 challenges.

2123 The PA shall review the Mid-Year Review materials and provide feedback to the implementer. The PA
 2124 may require additional documentation beyond the items and tools listed below. The Mid-Year Review
 2125 can be conducted in person, remotely via web meeting, or through desk audit by PA staff. The PA shall
 2126 specify how the Mid-Year Review will be conducted.

2127 4.4.2 Mid-year Review Items

2128 *The implementer shall provide responses to the below items as part of the Mid-year Review. Provide
 2129 a brief description of:*

- 2130 ■ **Business Description** – Provide a brief description of the customer, their business, and their
 2131 operations. If already documented in prior Reporting Periods, provide a brief description of
 2132 any changes of the above.
- 2133 ■ **Business or Market Changes** – Identify any observed or anticipated business or market
 2134 changes that will impact SEM participation and M&V.
- 2135 ■ **Site Staff Engagement** – Identify the current and anticipated engagement level of site staff
 2136 in the SEM program since the start of the Reporting Period.
- 2137 ■ **Energy Team Changes** – Identify if there have been or are anticipated to be any changes to
 2138 the energy team at the site. Identify the level of commitment and resources management
 2139 provides to the SEM engagement.
- 2140 ■ **Process Changes** – Identify if there have been or are anticipated to be any process changes
 2141 that will impact the customer's ability to participate in the SEM program or ability to conduct
 2142 M&V.

4. Reviewing and Reporting

2143
2144

- **New Product/Services or New Operations** – Identify any observed or anticipated new products/services or operations that will impact SEM participation and M&V.

2145
2146
2147

- **Anticipated M&V Boundaries** – Include for each type of energy that will be included in the M&V process the anticipated M&V boundaries. Specify any changes to the M&V boundaries that have changed from prior Reporting Periods.

2148
2149
2150
2151
2152

- **Anticipated M&V Method** – Include for each type of energy that will be included in the M&V process the M&V method (top-down or bottom-up) that is expected to be used. If a top-down method is being pursued, indicate for each type of energy the status of energy consumption adjustment model development for the M&V boundaries. Specify any change to the anticipated M&V method if different from prior Reporting Periods.

2153
2154
2155
2156

- **Energy Data Collection Plan** – Identify if a data collection plan has been developed that reflects the expected M&V method and boundaries for this Reporting Period and if site staff understand their role and are committed to it. Have there been changes to a previously developed Energy Data Collection Plan? What prompted these changes if any?

2157
2158
2159

- **Utility Meters** – For each type of energy to be included in the M&V process, list all utility meters that are anticipated to be used. Identify any changes to the list of utility meters from previous Reporting Periods.

2160
2161
2162

- **Data Collection Efforts** – Identify any challenges regarding data collection. Identify if the installation of submetering at the site would facilitate energy consumption adjustment model development.

2163
2164
2165

- **Energy Data Collection Tracker Tool** – Has the Energy Data and Performance Tracker Tool been updated to reflect change in the Energy Data Collection Plan? Is the customer using the Energy Data and Performance Tracker Tool?

2166
2167
2168

- **New or Retired non-IOU Fuels** – Identify any existing non-IOU fuels that affect the M&V process. Identify any anticipated changes to non-IOU provided energy sources during the Reporting Period.

2169
2170
2171

- **New or Retired on-site generation** – Identify any existing on-site generation within the anticipated M&V boundaries. Identify any anticipated changes to on-site generation during the Reporting Period.

2172
2173

- **IDSM Opportunities** – Identify any IDSM opportunities that the customer has interest in or plans to implement.

2174
2175

- **Treasure Hunt** – Identify the month and year (exact date is also acceptable) of the most recent and upcoming Treasure Hunt.

2176
2177
2178

- **Energy Management Assessment** – Identify the month and year (exact date is also acceptable) of the most recent and upcoming EMA. Results of the most recent and previous EMA.

4. Reviewing and Reporting

2179 4.4.3 Mid-year Review Tools

2180 *The following items shall be provided as part of the Mid-Year Review:*

For all participants	For first year participants
<ul style="list-style-type: none"> ➤ Energy Data and Performance Tracking Tool if actively being used at time of the mid-year review. ➤ Opportunity Register completed only as fully as benefitting the customer and to show active use of the Opportunity Register at the time of the mid-year review. 	<ul style="list-style-type: none"> ➤ Documentation that meets the requirements of Section 4.5.1.4, through Section 4.5.1.7, as fully as can be met at this time, shall be provided.

2181 4.5 SEM Reporting Period Performance Report Preparation Checklist

2182 A SEM Reporting Period Performance Report shall be developed for each Reporting Period.

2183 The information in the SEM Reporting Period Performance Report should be unique to the site and reflect the participation of the site in the SEM program.

2185 4.5.1 SEM Reporting Period Performance Report Requirements

2186 The SEM Reporting Period Performance Report shall contain the following information. The SEM Reporting Period Performance Report may be amended with additional information at the request of the PA or discretion of the implementer. The implementer can format the report as needed. The implementer shall add graphics and other supporting information when justifying changes to data or results.

2190 4.5.1.1 Table of Current and Historic Energy Savings

2191 A table of current and historic reported energy savings along with incentives paid and to be paid shall be placed at the beginning of the report. For this table, values for the current Reporting Period are being newly reported by the implementer and previous Reporting Period values should be updated to reflect values accepted by the PA and actually reported to the CPUC.

4. Reviewing and Reporting

	SEM Program Year					
	1	2	3	4	5	6
Electricity (kWh)						
Reporting Period Electricity Savings (Avoided or Annualized)						
Reporting Period Electricity Savings Method (Top-down or Bottom-up)						
(if Top-down is the model new or continued from the Previous Reporting Period)						
Electricity Savings to be Claimed from the Prior Reporting Period						
Electricity Savings to be Claimed from the Current Reporting Period						
Electricity Savings to be Claimed in the next Reporting Period						
Electricity Incentive Awarded in the Current Reporting Period (\$)						
Electricity Demand Savings (kW)						
Electricity Demand Savings to be Claimed from the Prior Reporting Period						
Electricity Demand Savings to be Claimed from the Current Reporting Period						
Electricity Demand Savings to be Claimed in the next Reporting Period						
Electricity Demand Incentive to be Awarded in the Current Reporting Period (\$)						
Natural Gas (Therms)						
Reporting Period Natural Gas Savings (Avoided or Annualized)						
Reporting Period Natural Gas Savings Method (Top-down or Bottom-up)						
(if Top-down is the model new or continued from the Previous Reporting Period)						
Natural Gas Savings to be Claimed from the Prior Reporting Period						
Natural Gas Savings to be Claimed from the Current Reporting Period						
Natural Gas Savings to be Claimed in the next Reporting Period						
Natural Gas Incentive to be Awarded in the Current Reporting Period (\$)						
Finalization						
Milestone Incentives Awarded in the Current Reporting Period (\$)						
Total Incentives to be Awarded in the Current Reporting Period (\$)						

2195

4.5.1.2 SEM Time Periods (2.1)

2196

1. Documentation of current SEM Program Cycle participation. (2.1.1.5)
2. SEM Program Cycle start and end dates. (2.1.1.1)
3. Time periods for the current SEM Program Cycle. Starting and ending dates for all Reporting Periods and Baseline Periods of the current SEM Program Cycle for each energy consumption adjustment model developed. (2.1.1.2 and 2.1.1.3) included in the energy consumption adjustment model table of Section 4.5.1.10.

2202

4.5.1.3 Site Characterization (2.2)

2203

1. Customer and site definition

2204

- a. A brief description of the customer, their business and their operations. (2.2.1.1)

2205

- b. A brief description of the site (2.2.1.2)

2206

2. M&V Boundaries (2.5)

2207

- a. A description of M&V boundaries.

2208

- b. Aerial images or line drawings of the site with M&V boundaries provided.

4. Reviewing and Reporting

2209 3. Energy types

2210 a. A table of all energy types that are delivered to and away from the M&V boundaries with associated energy using equipment, processes, and systems. If the type of energy is included in the M&V process. If the type of energy is delivered away from the facility boundaries, stored on-site, is a feedstock, and is generated/extracted on-site. (2.2.2)

2211
2212
2213 b. A statement affirming that the customer is supplied with non-utility (non-IOU) fuels or not. (2.2.2)

2214 I. If applicable, a description of the non-utility energy present at the site.

2215
2216 c. A statement affirming if the customer does or does not have on-site generation. (2.2.1.1)

2217 I. If applicable, a description of the on-site generation equipment and use.

2218
2219 II. If applicable, a description of how the M&V boundaries were modified to account for on-site generation.

2220
2221 d. A statement and analysis supporting decision to omit any energy types from the M&V process. (2.2.1.2)

2222
2223 4. Energy meters

2224 a. A table of all utility and other energy meters and submeters for all types of energy with unique identifiers, associated units and metering interval, and all major processes monitored. (2.2.4)

2225
2226 b. A list of equations and conversion factors used to measure energy consumption. (2.2.4)

2227
2228 5. Energy flows

2229 a. An energy flow drawing. (2.2.5)

2230 6. Energy Map

2231 a. As a separate document referred to in the SEM Reporting Period Performance Report or as part of the SEM Reporting Period Performance Report: The Energy Map. (2.2.6)

2232
2233 7. Statement of current energy performance improvement targets or energy savings goals.

2234 **4.5.1.4 Relevant Variables (2.3)**

2235 1. A table of potential relevant variables including associated data sources, energy types expected to be affected by the variables, and rationale for inclusion in the Energy Data Collection Plan. (2.3.1 – 2.3.2)

2236 2. Notation on the list of potential relevant variables or a separate list of relevant variables selected for data will be collected.

2237
2238
2239
2240 4.5.1.5 Energy Data Collection (2.4)

2241 1. As a separate document referred to in the SEM Reporting Period Performance Report or as part of the SEM Reporting Period Performance Report: The Energy Data Collection Plan. (2.4.1)

2242 » Energy meters

2243 » Relevant variable sources

2244 » For each data source: how to be collected, frequency of data collection, data storage method and location, person(s) responsible for collecting and storing data, person(s)

2245
2246 » A statement confirming that non-utility energy meters are calibrated is appropriate.

2247

4. Reviewing and Reporting

2248 2. A statement describing the review and any updates to the Energy Data Collection Plan (2.4.1.2)
 2249 3. Energy Data and Performance Tracking Tool (2.4.2)
 2250 » If savings are being claimed, as a separate document referred to in the SEM Reporting
 2251 Period Performance Report or as part of the SEM Reporting Period Performance Report:
 2252 The Energy Data and Performance Tracking Tool.

2253 4. Opportunity Register (2.4.3)
 2254 » As a separate document referred to in the SEM Reporting Period Performance Report
 2255 or as part of the SEM Reporting Period Performance Report: The Opportunity Register.

4.5.1.6 Collecting Data and Assessing Data Quality (2.6)

2257 1. A statement if there were or were not issues related to implementing the Energy Data
 2258 Collection Plan. (2.6.1)
 2259 2. A statement if there were or were not changes made to the data set. (2.6.2)
 2260 a. If applicable, a statement of the reason and description of any changes to the data set.
 2261 3. A statement if there were or were not data removed as outliers or anomalous data. (2.6.2)
 2262 a. If applicable, a description of the strategy used to remove outliers or anomalous data.
 2263 4. A statement if time-series adjustments were or were not made to the data. (2.6.3)
 2264 a. If applicable, a description of the analysis for the decision to use a time-series
 2265 adjustment.

4.5.1.7 Energy Consumption Adjustment Modeling (3)

2267 *For each type of energy included in the M&V process*

2268 1. A statement of energy savings method (top-down or bottom-up to be used. (3.1)
 2269 a. If applicable, as a separate document referred to in the SEM Reporting Period
 2270 Performance Report or as part of the SEM Reporting Period Performance Report a
 2271 Notification of Bottom-up Method of Determining Energy Savings. (3.1)

2272 *For each developed energy consumption adjustment model used to determine M&V Boundary
 2273 Energy Savings:*

2274 1. A statement if the energy consumption adjustment model used was developed and used as
 2275 part of a previous Reporting Period. (3.1)
 2276 a. If applicable, list all prior Reporting Periods that the energy consumption adjustment
 2277 model was used for.
 2278 2. Image of scatter diagrams of energy consumption and each relevant variable used in the
 2279 model or clear instructions where to find such diagrams in the Energy Data and Performance
 2280 Tracking Tool or Energy Consumption Adjustment Model Development Tool. (3.4)
 2281 3. A statement if the energy baseline was or was not modified in any way. (3.5)
 2282 a. If applicable, a description of the rationale and how the energy baseline was modified.

4. Reviewing and Reporting

2283 4. As a separate document referred to in the SEM Reporting Period Performance Report or as part of the SEM Reporting Period Performance Report: The Table of Competing Models. (3.7.4)

2284 5. Identification of which model was selected for use in calculating M&V Boundary Energy

2285 Savings. (3.8)

2286 6. A statement of the rationale for selecting energy consumption adjustment models that will

2287 be used to determine M&V Boundary Energy Savings. (3.8)

2288 7. A statement confirming if or if not ongoing confirmation of model validity was conducted and

2289 at what frequency (3.9)

2290

2291 a. The statement should confirm that the listed questions in section 3.9 were included

2292 and addressed in the ongoing confirmation of model validity.

2293 8. A statement if or if not individual intervals in the Reporting Period were flagged as having

2294 relevant variables data points outside allowed bounds of the energy baseline data set. (3.9)

2295 a. If applicable, a statement of how these intervals were addressed along with clear

2296 instructions where to find relevant data entries in the Energy Data and Performance

2297 Tracking Tool or Energy Consumption Adjustment Model Development Tool.

2298 9. A statement of the methods used to identify the presence of non-routine events. (3.10.1.1)

2299 10. A statement if non-routine events were or were not identified. (3.10.1.1)

2300 a. If applicable, a description of the non-routine events and methods and rationale for use

2301 of the method used for making non-routine adjustments.

2302 11. If applicable, a statement of the rationale for why backcast normalization was used rather

2303 than a bottom-up approach of aggregating energy savings from individual EPIAs.

2304 **4.5.1.8 Monitoring Energy Performance (3.12)**

2305 1. For each type of energy included in the M&V process, a plot of actual and predicted

2306 energy consumption that spans the Baseline Period and all Reporting Periods (current

2307 and historic) for which the energy consumption adjustment model has been used. This

2308 plot may either be in the SEM Reporting Period Performance Report or part of the Energy

2309 Data and Performance Tacking Tool with clear instructions where to find the plot. (3.12.1)

2310 2. A statement confirming if the customer and implementer together did or did not review the

2311 Opportunity Register to ensure that EPIAs were being implemented and energy savings were

2312 calculated and were within reason of what was expected. (3.12)

2313 3. As a separate document referred to in the SEM Reporting Period Performance Report or as

2314 part of the SEM Reporting Period Performance Report, for each EPIA being included as part

2315 of a bottom-up calculation for energy savings for regulatory reporting:

2316 a. The method and analysis used to determine annualized and Avoided Energy

2317 Consumption Energy Savings for EPIAs

2318 b. The method and analysis used to determine if the EPIA was identified and planned

2319 outside of a SEM Program Cycle.

2320 4. For each type of energy included in the M&V process for which energy consumption

2321 adjustment models were used to report energy savings, identify the EPIAs for which energy

2322 savings were removed from the model-based energy savings.

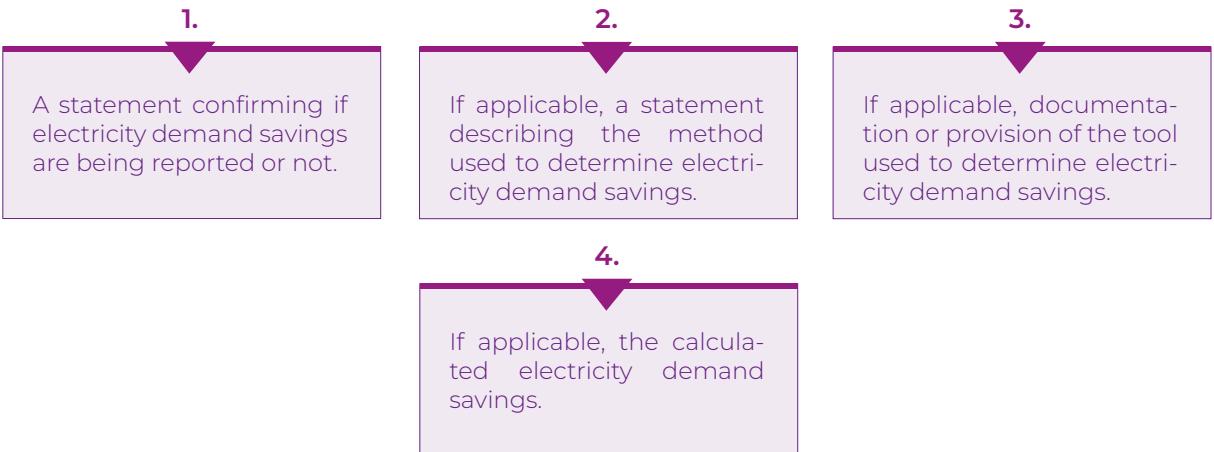
4. Reviewing and Reporting

4.5.1.9 Calculating M&V Boundary Energy Savings with Energy Consumption Adjustment Models (3.13)

2325 For each type of energy included in the M&V process:

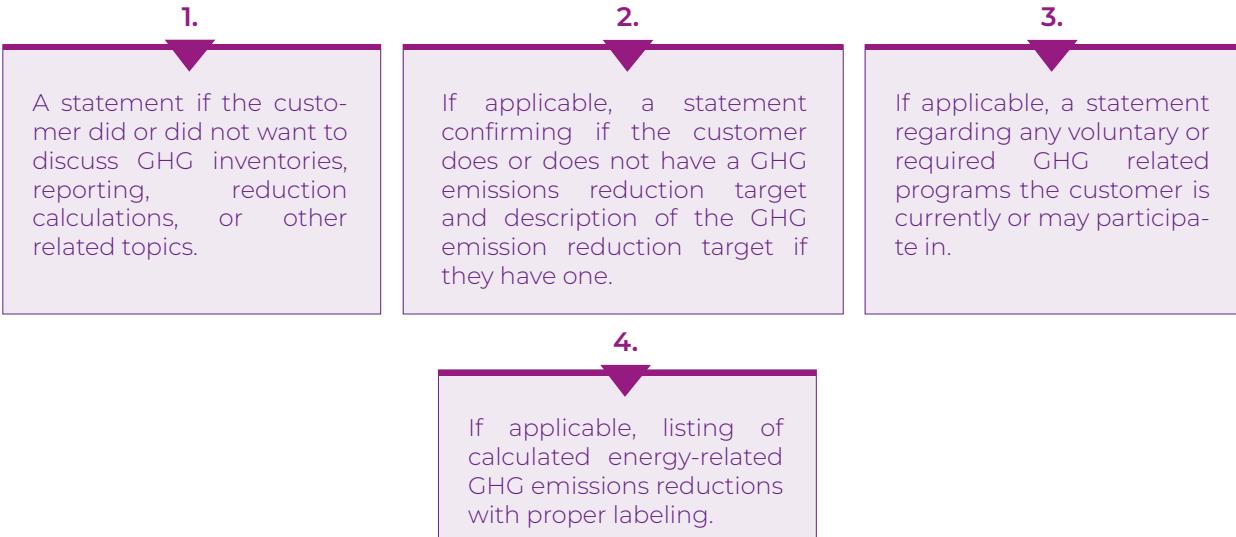
- 2326 1. A CUSUM plot with annotation and footnotes that spans the Baseline Period and all Reporting
2327 Periods (current and historic) for which the energy consumption adjustment model has been
2328 used. This plot may also be either be in the SEM Reporting Period Performance Report or part
2329 of the Energy Data and Performance Tracking Tool but must be replicated in this report. (3.12.1)
- 2330 2. A statement indicating if energy savings will be reported on an Avoided Energy Consumption
2331 or annualized basis for the current Reporting Period.
- 2332 3. If annualized energy savings are being reported:
 - 2333 a. A statement of the rationale for annualization and that the PA has approved
2334 annualization.
 - 2335 b. If applicable, a statement that the Reporting Period will be divided to accommodate
2336 seasonality and,
 - 2337 c. A statement of the start and end date of the Annualization Period.
 - 2338 d. If applicable, a statement with the rationale for an Annualization Period longer than 120
2339 days.
 - 2340 e. If applicable, a statement with the rationale for an Annualization Period that ends prior
2341 to the end of the Reporting Period.
 - 2342 f. If applicable, a statement and analysis of how outliers were addressed in the
2343 Annualization Period.

4.5.1.10 Reported Energy Savings (4)


2345 For each type of energy included in the M&V process:

- 2346 1. For each type of energy, a table listing current Reporting Period Avoided Energy Consumption
2347 M&V Boundary Energy Savings, Non-SEM Program Energy Savings, SEM Program Energy
2348 Savings, SEM Incited Energy Savings, and SEM Non-incited Project Energy Savings. (4.1.2)
- 2349 2. As part of the SEM Reporting Period Performance Report or in another document, non-utility
2350 supplied energy (non-IOU fuels) analysis,
- 2351 3. If applicable, annualized energy savings value being reported.
- 2352 4. For each energy type for which a bottom-up approach is being used, a table identifying
2353 the EPIAs for which energy savings are being claimed which can be used to connect to the
2354 Opportunity Register.
 - 2355 a. For each EPIA, the pro-rated energy savings value to claim in the current Reporting
2356 Period from the previous Reporting Period (if applicable)
 - 2357 b. For each EPIA, the pro-rated energy savings value to claim in the current Reporting
2358 Period from the current Reporting Period
 - 2359 c. For each EPIA, the pro-rated energy saving value to claim in the next Reporting Period
2360 (this will be 0 if the PA has given permission to report savings using an annualized
2361 basis).

4. Reviewing and Reporting


2362

4.5.1.11 Calculating Demand Savings (4.2)

2363

4.5.1.12 Greenhouse Gas Savings (4.3)

2364

4.5.1.13 EMA Results

2365
2366

For each Reporting Period a table of EMA score results should be filled out and built up during subsequent Reporting Periods.

	SEM Program Year					
	1	2	3	4	5	6
EMA Section 1: Context of the Organization						
EMA Section 2: Leadership						
EMA Section 3: Planning						
EMA Section 4: Support						
EMA Section 5: Operation						
EMA Section 6: Performance Evaluation						
EMA Section 7: Improvement						
EMA Overall Score						

5 Annex	80	A N N E X
5.1 References	80	page 79-101
5.2 Acknowledgements	81	
5.3 Annex A Terminology	81	A N N E X
5.4 Annex B Special Cases in Energy Accounting	87	A N N E X
5.4.1 Energy Accounting of Energy Export and Energy Product	87	A N N E X
5.4.2 On-site Extraction or Generation of Energy from Natural Resources	88	A N N E X
5.4.3 Feedstock and Resulting Energy Types	89	A N N E X
5.5 Annex C Bottom Up EPIA Calculation Effort and Documentation	90	A N N E X
5.6 Annex D Multicollinearity and Autocorrelation	94	A N N E X
5.6.1 Multicollinearity	94	A N N E X
5.6.2 Autocorrelation	95	A N N E X
5.7 Annex E Graphical Representation of the Table of Competing Models	96	A N N E X
5.8 Annex F Fractional Savings Uncertainty Scenarios	97	A N N E X
5.9 Annex G Cumulative and Incremental Savings Example	98	A N N E X
5.9.1 Scenario 1: Backsliding reported as 0 energy savings:	98	A N N E X
5.9.2 Scenario 2: Backsliding claimed as negative energy savings values.	99	A N N E X
5.10 Annex H Total System Benefits	100	A N N E X
5.11 Annex I Revision History	101	A N N E X

5. Annex

2367 5 Annex

2368 5.1 References

- 2369 ▶ Andrew Bernath and Maggie Buffum, Estimating Energy Savings Resulting from Strategic
2370 Energy Management Programs: Methodology Comparison, 2017 International Energy
2371 Program Evaluation Conference, Baltimore, MD
- 2372 ▶ ASHRAE Guideline 14:2014 – Measurement of Energy, Demand and Water Savings
- 2373 ▶ Bonneville Power Administration, Commercial & Industrial Strategic Energy Management
2374 Measurement & Verification Reference Guide, Revision 1.0, March 31, 2022
- 2375 ▶ California Air Resources Board, Cal e-GCRT, Accessed May 2022,
2376 <https://ssl.arb.ca.gov/Cal-eCRT/login.do>
- 2377 ▶ California Air Resources Board, Mandatory GHG Reporting – Guidance Documents, Accessed
2378 May 2022, <https://ww2.arb.ca.gov/mrr-guidance>
- 2379 ▶ California Public Utilities Commission (CPUC), Energy Efficiency Savings Eligibility at Sites
2380 with non-IOU Supplied Energy Sources – Guidance Document, Version 1.1, November 2015
- 2381 ▶ Consortium for Energy Efficiency (CEE), CEE Strategic Energy Minimum Elements, February
2382 2014
- 2383 ▶ Earni, S. and Therkelsen, P., Non-routing adjustments – towards standardizing M&V approach
2384 for quantifying the effects of static factors. 2020. Presented at the ECEEE Industrial Summer
2385 Study, virtual event, DOI 10.20357/B71W20
- 2386 ▶ Efficiency Evaluation Organization (EVO), International Performance Measurement and
2387 Verification Protocol (IPMVP) – Core Concepts, March 2022.
- 2388 ▶ Efficiency Valuation Organization (EVO), IPMVP Application Guide on Non-routine Events &
2389 Adjustments, 2020
- 2390 ▶ Energy Trust of Oregon Energy Production Efficiency, Energy Intensity Modeling Guideline,
2391 Version 2.2, January, 2019
- 2392 ▶ Intergovernmental Panel on Climate Change (IPCC), Climate Change 2022 Impacts,
2393 Adaptation, and Vulnerability Summary for Policymakers, Accessed May 2022, https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_FinalDraft_FullReport.pdf
- 2395 ▶ ISO 50001:2018 – Energy management systems – Requirements with guidance for use
- 2396 ▶ ISO 50015:2014 – Measurement and verification of energy performance of organizations –
2397 General principles and guidance
- 2398 ▶ ISO 50047:2016 – Determination of energy savings in organizations
- 2399 ▶ NW SEM Collaborative, SEM Energy Modeling Method Selection Guide, 2019
- 2400 ▶ Philipp Degens and Anna Kelly, Strategic Energy Management Modeling: What's good
2401 enough?, 2017 International Energy Program Evaluation Conference, Baltimore, MD
- 2402 ▶ SBW Consulting Inc., Group D – D11.03 2018-19 Industrial Strategic Energy Management (SEM)
2403 Impact Evaluation, January 2022

5. Annex

- 2404 ▶ SBW Consulting Inc., Uncertainty Approaches and Analyses for Regression Models and
2405 ECAM, 2017
- 2406 ▶ Science Based Targets initiative (SBTi), Set a Target, Accessed May 2022, <https://sciencebasedtargets.org/set-a-target>
- 2408 ▶ U.S. Environmental Protection Agency, EPA Center for Corporate Climate Leadership,
2409 Accessed May 2022, <https://www.epa.gov/climateleadership>
- 2410 ▶ U.S. Department of Energy Superior Energy Performance 50001, SEP 50001, Measurement &
2411 Verification Protocol: 2019, October 29, 2019
- 2412 ▶ World Business Council for Sustainable Development and World Resources Institute, The
2413 Greenhouse Gas Protocol – A Corporate Accounting and Reporting Standard, March 2004

2414 5.2 Acknowledgements

2415 This M&V Guide was authored by Raven Energy Consulting under contract to Sergio Dias Consulting.

2416 The authors would like to thank the Energy Trust of Oregon, Bonneville Power Administration, and U.S.
2417 Department of Energy for their comprehensive, publicly available M&V Guides. M&V Guides from these
2418 organizations were foundational to this M&V Guide and tailored to the specific context of the California
2419 SEM programs. Many elements developed for this document were based on those documents and
2420 adapted with permission.

2421 The authors would also like to thank the staff of the California Public Utilities Commission, Pacific Gas
2422 and Electric, San Diego Gas and Electric, Southern California Gas, Southern California Edison, and Marin
2423 Clean Energy who have provided their expertise, knowledge, and made available their contractors' time
2424 to support the revision of this M&V Guide. PA and CPUC contractors include staff from Cascade Energy,
2425 CLEAResult, DNV, kW Engineering, Leidos, Stillwater, and EPS.

2426 5.3 Annex A - Terminology

2427 *For the purposes of this M&V Guide, the following terms and definitions apply.*

2428 This terminology guide is focused on providing clarity to assist the establishment of the M&V process.
2429 Statistical tests are not defined as detailed understanding of the meaning of these test is not required
2430 of the customer and competent implementers should already be familiar with these terms. Additionally,
2431 these terms are well established in authoritative and easily obtained statistics reference manuals.

2432 **“Annualization Period:** defined period of time selected for the annualization of energy savings
2433 → Additional specification provided in [Section 2.1.1.4](#)

5. Annex

2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441

“Avoided Energy Use / Avoided Energy Consumption: Avoided Energy Use is the amount of energy (or peak demand) that was not consumed or realized as a result of the energy efficiency project or program intervention. Avoided energy use is the difference between actual energy consumption in the “reporting period” and the consumption that is forecast for the same period using the “baseline energy consumption model,” and where the baseline energy consumption model use is adjusted to reflect reporting period conditions. The Avoided Energy Use approach is used as the basis of customer incentive calculations and embedded M&V reporting of savings.

2442 } **Source:** CPUC NMEC Rulebook version 2.0
 2443 → Additional specifications provided in [Section 1.4](#)

2444
 2445
 2446

“Baseline Period: Specific period of time before the implementation of an energy performance improvement action selected for comparison with the Reporting Period and the calculation of the energy performance and of energy performance improvement

2447 } **Source:** ISO 50015:2014, 3.1
 2448 → Additional specifications provided in [Section 2.1.1.3](#)

2449
 2450
 2451
 2452

“Behavioral: Behavioral activities provide energy savings from interventions that result in changes in actions by customers with respect to energy usage in a building. Behavioral activities consist of actions such as manually turning off lights and equipment, adjusting blinds, reducing water use and so on.

2453 } **Source:** CPUC NMEC Rulebook version 2.0

2454
 2455
 2456

“Boundary: physical or organizational limits
Example: A process; a group of processes; a site; multiple sites under the control of an organization, or an entire organization

2457 } **Source:** ISO 50001:2018, 3.1.3 - modified (removed Note 1)

2458 } **BRO:** The combination of behavioral, retrocommissioning, and operational activities

2459
 2460
 2461

“Energy: electricity, fuels, steam, heat, compressed air, and other like media
Note 1: for the purposes of this Guide, energy refers to the various types of energy, which can be purchased, stored, treated, used in equipment or in a process, or recovered.

2462 } **Source:** ISO 50001:2018, 3.5.1 - modified (replaced “International Standard” with “this Guide”, and removed “including renewable” in Note 1)

2464
 2465
 2466
 2467
 2468
 2469
 2470

“Energy baseline: quantitative reference(s) providing a basis for comparison of energy performance
Note 1: An energy baseline is based on data from a specified period of time and/or conditions, as defined by the organization
Note 2: Energy baselines are used for determination of energy performance improvement, as a reference before and after, or with and without implementation of energy performance improvement actions.

2471 } **Source:** ISO 50001:2018, 3.4.7

5. Annex

2472 “**Energy consumption:** quantity of energy applied

2473 } **Source:** ISO 50001:2018, 3.5.2

2474 “**Energy efficiency:** ratio or other quantitative relationship between an output of performance, service, goods, commodities, or energy, and an input of energy

2476 } **Source:** ISO 50001:2018, 3.5.3 – modified (removed examples and Note 1)

2477 “**Energy export:** The quantity of energy delivered away from the M&V boundary such that the site is not be counted as a net negative consumer of energy

2478 } **Source:** Modified from SEP 50001 M&V Protocol, 2019

2480 “**Energy management system:** management system to establish an energy policy, objectives, energy targets, action plans and process(es) to achieve the objectives and energy targets

2481 } **Source:** ISO 50001:2018, 3.2.2

2483 “**Energy performance:** measurable result(s) related to energy efficiency, energy use, and energy consumption

2484 **Note 1:** Energy performance can be measured against the organization's objectives, energy targets and other energy performance requirements.

2485 **Note2:** Energy performance is one component of the performance of the energy management system

2486 } **Source:** ISO 50001:2018, 3.4.3

2487 “**Energy performance improvement:** improvement in measurable results of energy efficiency, or energy consumption related to energy use, compared to the energy baseline

2488 **Note 1:** This M&V Guide uses energy savings as the indicator of energy performance improvement.

2489 } **Source:** ISO 50001:2018, 3.4.6 – modified (added note)

2490 “**Energy performance improvement action:** action or measure or group of action or measures implemented or planned within an organization intended to achieve energy performance improvement through technological, managerial or operational, behavioral, economical, or other changes

2491 **Note 1:** Energy performance improvement actions includes both BRO and capital projects.

2492 } **Source:** ISO 50015:2014, 3.3 – modified (added note)

2493 “**Energy product:** Any excess energy delivered away from the M&V boundaries after a net zero level of energy consumption is reached

2494 } **Source:** Modified from SEP 50001 M&V Protocol, 2019

5. Annex

2504 “**Energy target:** quantifiable objective of energy performance improvement

2505 } **Source:** ISO 50001:2018, 3.4.15

2506 “**Energy use:** application of energy

2507 **Examples:** ventilation; lighting; heating; cooling; transportation; data storage; production
2508 process

2509 **Note 1:** Energy use is sometimes referred to as “energy end-use”

2510 } **Source:** ISO 50001:2011, 3.5.4

2511 “**Feedstock:** raw or unprocessed material used as an input to a manufacturing process to be
2512 converted to a product

2513 **Example:** crude oil used to produce petroleum products

2514 “**Measurement and verification (M&V):** process of planning, measuring, collecting data,
2515 analyzing, verifying, and reporting energy performance or energy performance improvement
2516 for defined M&V boundaries

2517 } **Source:** ISO 50015:2014, 3.11

2518 “**M&V boundary:** organizational, physical, site, equipment, systems, process or activity limits
2519 within which energy performance or energy performance improvement is measured and
2520 verified

2521 } **Source:** ISO 50015:2014, 3.12

→ See [Section 2.5](#)

2523 “**Natural resources:** Energy delivered to the M&V boundaries that is not supplied by an
2524 organization

2525 **Examples:** sunlight, natural gas from an on-site well, geothermal

2526 } **Source:** Modified from SEP 50001 M&V Protocol, 2019

2527 “**Non-routine adjustment:** adjustment made to the energy baseline or Reporting Period
2528 energy consumption to account for unusual changes in relevant variables or static factors,
2529 outside the changes accounted for by normalization

2530 **Note 1:** non-routine adjustments may apply where the energy baseline or Reporting Period no
2531 longer reflects energy use or energy consumption patterns, or there have been major changes
2532 to the process, operational patterns, or energy using systems

2533 } **Source:** ISO 50015:2014, 3.16 – modified (added, “or Reporting Period energy consumption”)

2534 “**Non-SEM Program Energy Savings:** Energy savings calculated for EPIAs identified and
2535 planned outside of any SEM Program Cycle and implemented during the current Reporting
2536 Period, whether receiving other incentives or not.

2537

→ Definition also provided in [Section 4.1.2](#)

5. Annex

2538 **“Normalization:** modification of data to account for changes to enable comparison of energy
2539 performance under equivalent conditions

2540 } Source: ISO 50001:2018, 3.4.10

2541 **“Operational Activities:** Control-based; they improve or adjust existing controls to optimize
2542 equipment performance. Operational activities include maintaining room temperature set
2543 points, revising equipment operating schedules consistent with current building occupancy
2544 schedule, and changing equipment set points in response to current weather conditions.

2545 } Source: CPUC NMEC Rulebook version 2.0

2546 “**Relevant variable**: quantifiable factor that affects energy performance and routinely changes
2547 **Note 1**: Significance criteria are determined by the organization
2548 **Note 2**: Other commonly terms for relevant variables include independent variable and energy
2549 driver
2550 **Examples**: Weather conditions, operating conditions (indoor temperature, light level), working
2551 hours, production output

2552 } Source: ISO 50001:2018, 3.4.9 – modified (added Note 2)

2553 **“Reporting Period:** defined period of time selected for calculation and reporting of energy
2554 performance

2555 } **Source:** ISO 50001:3.17, 3.17

→ Additional specifications provided in Section 2.1.1.2

2557 **“Retrocommissioning:** A systematic process of identifying and implementing operational
2558 and maintenance improvements to achieve the design intentions consistent with the
2559 current usage of a building. The process is designed to improve the performance of building
2560 subsystems as well as optimize the performance of the overall system. Retrocommissioning
2561 focuses on operations and maintenance improvements and diagnostic testing, although
2562 major repairs and equipment upgrades may be identified and recommended through the
2563 process. Minor repairs required to conduct diagnostic testing may also be implemented.

2564 Behavioral, Operational, Maintenance and Repair measures may be identified and carried
2565 out during a retrocommissioning project. Behavioral, operational and maintenance activities
2566 may also be implemented separately as “operations and maintenance” projects in existing
2567 buildings.

2568 } Source: CPUC NMEC Rulebook version 2.0

→ Additional specification provided in Section 4.1.2

2572 **“SEM Non-incented Project Energy Savings:** Energy savings for an EPIA (project) identified
2573 during any SEM Program Cycle and implemented during the current Reporting Period that is
2574 to receive an incentive from another PA program.

→ Additional specification provided in Section 4.1.2

5. Annex

2576 “**SEM Program Cycle:** 24 month period that distinguishes each “cycle” detailed in the SEM
 2577 Program Design Guide. There are three “cycles” in the SEM Program Design Guide.

2578 → Additional specifications provided in Section 2.1.1.1

2579 “**SEM Program Energy Savings:** Site-wide Projected Energy Savings minus Non-SEM Program
 2580 Energy Savings

2581 → Additional specification provided in Section 4.1.2

2582 “**M&V Boundary Energy Savings:** Incremental energy savings for a given type of energy
 2583 resulting from the aggregation of energy savings from each energy consumption adjustment
 2584 model developed for the same energy type.

2585 → Additional specification provided in Section 4.1.2

2586 “**Static factor:** Identified factor that impacts energy performance and does not routinely
 2587 change

2588 **Example 1** Examples of static factors may include site size, design of installed equipment, the
 2589 number of weekly production shifts, the number or type of occupants, range of products

2590 **Example 2** An example of a change in a static factor could be a change in a manufacturing
 2591 process raw material from aluminum to plastic may lead to a non-routine adjustment.

2592 } **Source:** ISO 50015, 3.20

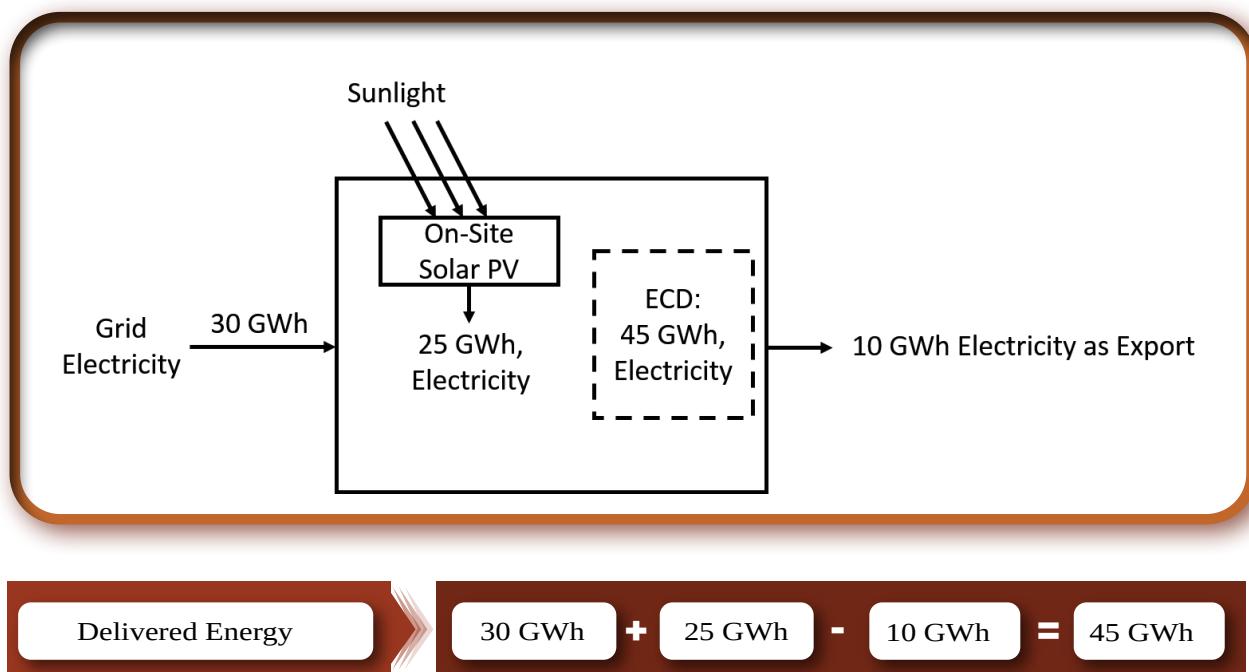
2593 “**Strategic Energy Management (SEM):** A holistic approach to managing energy consumption
 2594 in order to continuously improve energy performance, by achieving persistent energy and
 2595 cost savings over the long term. SEM focuses on business practice change from senior
 2596 management through shop floor staff, affecting organizational culture to reduce energy waste
 2597 and improve energy intensity. SEM emphasizes equipping and enabling plant management
 2598 and staff to impact energy consumption through behavioral and operational change.
 2599 While SEM does not emphasize a technical or project centric approach, SEM principles and
 2600 objectives may support capital project implementation.

2601 } **Source:** CEE SEM Minimum Element – modified (replaced energy use with consumption)

5. Annex

5.4 Annex B - Special Cases in Energy Accounting

2602 The below scenarios are provided as examples and are not requirements of this M&V Guide. Current PA
 2603 and CPUC policies should be reviewed and used throughout the M&V process.

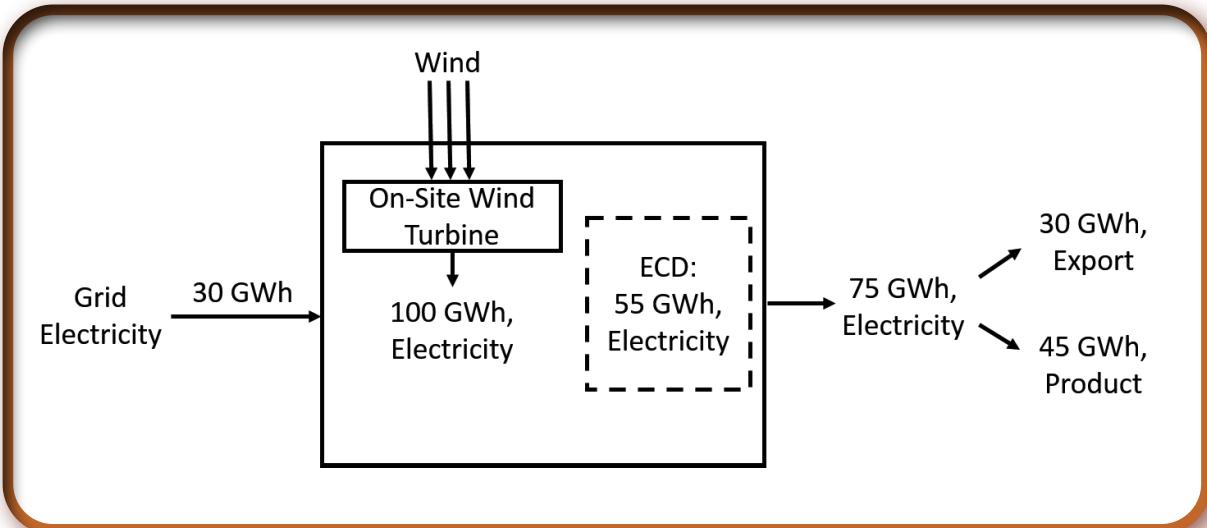

5.4.1 Energy Accounting of Energy Export and Energy Product

2606 Energy delivered away from the M&V boundaries shall be accounted for as either an energy export or
 2607 energy product.

Energy Export

2609 The maximum allowable amount of energy export is equal to the quantity of energy delivered into the
 2610 site boundary of the same energy type such that a net zero level is reached on a delivered energy basis.
 2611 A site may not be counted as a net negative consumer of any energy type.

2612 **EXAMPLE:** A site purchases 30 GWh of grid electricity and produces 25 GWh of electricity
 2613 with on-site photovoltaic (PV) panels. The site consumes 45 GWh and delivers 10 GWh away
 2614 from the M&V boundaries. The 10 GWh delivered away from the M&V boundaries is treated as
 2615 energy export. See figure below.

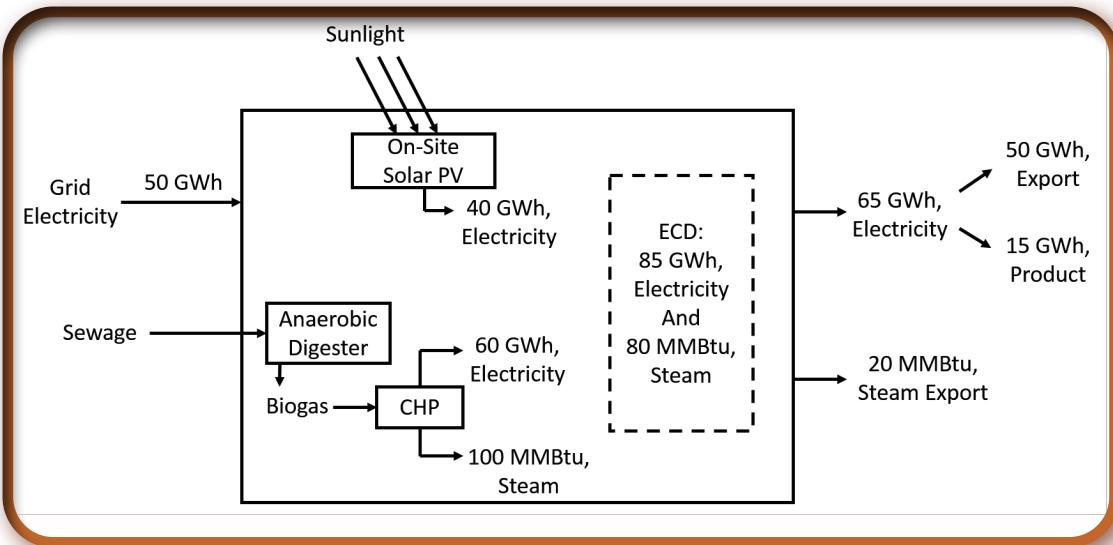


Energy Product

2617 For each energy type, if a net zero level is reached on a delivered energy basis, any excess energy deli-
 2618 vered away from the M&V boundaries is accounted for as an energy product. This may result from a site
 2619 producing large quantities of on-site energy. Energy product shall be considered as a relevant variable
 2620 for adjustment models.

2621 **EXAMPLE:** A site purchases 30 GWh of grid electricity and generates 100 GWh of electricity
 2622 with on-site wind turbines. The site consumes 55 GWh and delivers 75 GWh away from the
 2623 M&V boundaries. A maximum quantity of 30 GWh is treated as energy export. The remaining
 2624 45 GWh is treated as energy product. See figure below.

5. Annex


$$\text{Delivered Energy} \rightarrow 30 \text{ GWh} + 100 \text{ GWh} - 30 \text{ GWh} - 45 \text{ GWh} = 55 \text{ GWh}$$

5.4.2 On-site Extraction or Generation of Energy from Natural Resources

Energy from natural resources that are delivered into and consumed within or delivered away from the M&V boundaries shall be included in the energy accounting. The point at which on-site extracted or generated energy is metered and accounted for may be selected by the organization so long as it is at a reasonable point along the extraction or generation process flow (e.g., a site may choose to meter biogas flow and energy content or the resulting electricity and hot water generated from the utilization of the same biogas). This measurement point shall be consistent between the baseline and Reporting Periods. This allowance is made recognizing that the quantity of energy of some natural resources (e.g., photons or wind) or the energy derived thereof (e.g., biogas) may be difficult to meter. In such cases, the quantity of energy generated within the M&V boundaries from the natural resource (e.g., AC electricity from the inverter of a PV panel system) may be metered and included in the energy accounting.

NOTE: While metering energy at a point along the extraction or generation process flow downstream of the M&V boundaries may be simpler and more cost effective (e.g. metering hot water produced from a biogas fired boiler, rather than the biogas produced from a sewage fed digester), the effect of energy performance improvement actions implemented upstream of the point of metering may not be reflected in the calculated site-wide energy performance improvement.

EXAMPLE: A wastewater treatment site uses sewage to generate biogas, which is used to generate electricity and steam in a CHP system. The site also purchases grid electricity, and generates on-site electricity with an array of PV panels. As the site cannot cost-effectively install meters to measure biogas flow and energy content, the site decides to meter the electricity and steam coming out of the CHP system for energy accounting purposes. In one month, the biogas CHP system produces 60 GWh of electricity and 100 MMBTU of steam. The site purchases 50 GWh of grid electricity and generates 40 GWh of on-site electricity with the PV panels. The site consumes 85 GWh of electricity and delivers 65 GWh of electricity away from the M&V boundaries. The site consumes 80 MMBTU of steam and delivers 20 MMBTU away from the M&V boundaries. See figure below.

Electricity : Delivered Energy \rightarrow $50 \text{ GWh} + 60 \text{ GWh} + 40 \text{ GWh} - 50 \text{ GWh} - 15 \text{ GWh} = 85 \text{ GWh}$

Steam : Delivered Energy \rightarrow $100 \text{ MMBtu} - 20 \text{ MMBtu} = 80 \text{ MMBtu}$

2652 5.4.3 Feedstock and Resulting Energy Types

2653 In some instances, energy delivered to the M&V boundaries may be used as a feedstock rather than consumed as energy. The portion of an energy type used as a feedstock shall be subtracted from the delivered energy. The commodity that is being produced from the feedstock shall be considered as a relevant variable in the energy consumption adjustment model.

2657 Any energy types resulting from the processing of feedstock (e.g., process gas produced during the refining process, heat generated by an exothermic reaction, biogas generated from sewage) that are consumed within or delivered away from the M&V boundaries shall be included in the energy accounting.

2660 **EXAMPLE:** A site purchases 1000 Therms of natural gas and uses 750 Therms to produce
 2661 hydrogen, which is sold as a commodity, while consuming the other 250 Therms within the
 2662 site boundary in a boiler. The energy accounting shall include 250 Therms. The production
 2663 quantity of hydrogen shall be considered as a relevant variable in the energy consumption
 2664 adjustment model.

5. Annex

5.5 Annex C – Bottom Up EPIA Calculation Effort and Documentation

2665 Every bottom-up calculation being used to report claimable energy savings should include a description
2666 of the project that at the very least describes:

2668 ■ The implemented measure

2669 ■ The baseline equipment/operation (equipment #, size, operating hours etc.)

2670 The post-installation equipment/operation and specifically how it has changed between the baseline
2671 and post implementation phases.

2672 In 2022 a joint PA working group submitted a table detailing the level of effort that should be used when
2673 calculating energy savings resulting from individual EPIAs. This table was reviewed by a larger stakeholder
2674 group of PA staff and contractors and CPUC staff and contracted evaluators. The documentation
2675 column was added as part of M&V Guide version 4.0. The table is provided as reference below.

2676 Note: the table below is only relevant for EPIAs and their associated energy savings that will be reported
2677 for the purpose of claiming energy savings using the bottom-up approach. This table may provide useful
2678 guidance to characterize and document the energy savings from EPIAs for which energy savings are not
2679 being claimed via a bottom-up approach.

5. Annex

EPIA Savings	Baseline/Implementation Verification Techniques	Examples (not exhaustive or exclusive)	Example Supporting Documentation
Notes: Implementers will follow these guidelines to the best of their ability. In cases where supporting information is not available or is not reasonably obtainable, the implementer will provide an explanation and substitute whatever information is available. All savings calculations will be provided in an unlocked excel spreadsheet or PA approved tool.			
A Electric: Less than 50,000 kWh Gas: Less than 25,000 Therms	<p>Process: Collect information for calculations by phone or email from operators, contractors, and/or suppliers. Pre or post inspection not required.</p> <p>Calculation Approach: Simple calculation methods using engineering judgement.</p>	<ul style="list-style-type: none"> · HVAC adjustments; · Compressed air leak repair; · Automation controls; · Reduce lighting levels; · Steam trap repair and replacement 	<ul style="list-style-type: none"> ■ Confirmation of project implementation (email or other confirmation) ■ Project narrative including: <ul style="list-style-type: none"> » Details of the implemented measure » A clear description of the location of upgrade » The baseline equipment/operation (equipment #, size, operating hours etc. » The post-installation equipment/operation ■ Confirmation of annual hours of runtime through conversations with site personnel ■ Justification of assumptions used. ■ Must provide at least 1 additional supporting documentation item. Examples of supporting documentation listed below. Other applicable documentation types are acceptable. <ul style="list-style-type: none"> » Photos of equipment, » Nameplates/specifications » Setpoints, gauge readings, » Screenshots from control systems (such as SCADA or EMIS). » Spot measurements, » Other data from end user or vendors,
B Electric: 50,000 kWh to 150,000 kWh Gas: 25,000 Therms to 50,000 Therms	<p>Process: Collect information for calculations by phone or email from operators, contractors, and/or suppliers.</p> <p>If helpful, consider a site visit but it is not required.</p> <p>Calculation Approach: Calculations will use collected site information and engineering judgement.</p>	<ul style="list-style-type: none"> · Adjust air compressor setpoints; · Dryer controls; · Lighting controls; · Lighting upgrade to LED; · Compressed air leak repair; · VFDs; HVAC schedules and setbacks; · Shut off equipment when not in use 	<ul style="list-style-type: none"> ■ Confirmation of project implementation (email or other confirmation) ■ Project narrative including: <ul style="list-style-type: none"> » Details of the implemented measure » A clear description of the location of upgrade » The baseline equipment/operation (equipment #, size, operating hours etc. » The post-installation equipment/operation and specifically how it has changed between the baseline and post implementation phases. ■ Confirm annual hours of runtime through conversations with site personnel, control systems, logs, or trends, and list the source if applicable. ■ Justification of assumptions used. ■ Confirm quantities, schedule, setpoints, loading, performance improvement, performance issues as applicable. ■ Must provide at least 2 additional supporting documentation items. Examples of supporting documentation listed below. Other applicable documentation types are acceptable. <ul style="list-style-type: none"> » Photos of equipment, » Nameplates/specifications » Setpoints, gauge readings, » Screenshots from control systems (such as SCADA or EMIS). » Spot measurements, » Short or long term data trends » Other data from end user or vendors » including quotes or other project details.

5. Annex

EPIA Savings	Baseline/Implementation Verification Techniques	Examples (not exhaustive or exclusive)	Example Supporting Documentation
Electric: 150,000 kWh to 500,000 kWh	<p>Process: If information for calculations may be adequately collected by phone and email from operators, contractors, and/or suppliers, Datalogging is encouraged though not required. Optional, visit site to collect the information.</p> <p>A pre-inspection visit is not required.</p> <p>Supporting Information: as appropriate, to supplement information from operators, contractors, and suppliers..</p> <p>Calculation Approach: Calculations will use collected site information, data logging or site provided data (if available), and engineering judgement. Calculations may involve bin analyses or seasonal adjustments and may use PA-approved tools if applicable. Normalization to production or weather is recommended, if applicable.</p>	<ul style="list-style-type: none"> - VFDs; - Lighting upgrades; - Replace pneumatic pump with electric; HVAC schedules and setbacks; - Compressed air valve replacement; - Compressor controls; - Economizer optimization; - Lighting upgrade to LED; - Chiller temperature adjustments 	<ul style="list-style-type: none"> ■ Project narrative including: <ul style="list-style-type: none"> » Details of the implemented measure » A clear description of the location of upgrade » The baseline equipment/operation (equipment #, size, operating hours etc. » The post-installation equipment/operation and specifically how it has changed between the baseline and post implementation phases. » Confirm annual hours of runtime through conversations with site personnel, control systems, logs, or trends, and list the source if applicable. ■ Justification of assumptions used. ■ Confirm quantities, schedule, setpoints, loading, performance improvement, performance issues as applicable. ■ Must provide at least 3 additional supporting documentation items. Examples of supporting documentation listed below. Other applicable documentation types are acceptable. <ul style="list-style-type: none"> » Photos of equipment, » Nameplates/specifications » Setpoints, gauge readings, » Screenshots from control systems (such as SCADA or EMIS). » Spot measurements, » Short or long term data trends » Other data from end user or vendors including quotes or other project details.
Gas: 50,000 Therms to 200,000 Therms	<p>Process: While the SEM M&V Guide does not require a specific M&V Plan for bottom-up EPIAs, it is best practice to describe an M&V strategy for EPIAs with this level of savings.</p> <p>Required supporting information and data will be collected prior to installation of the EPIA to validate assumptions in the savings analysis. Often, site personnel can provide post-installation data and information, therefore, a post-installation site visit may not be necessary if the information can be collected remotely. If a pre-installation visit cannot be completed or is not relevant, the implementer will justify the reason a site visit was not completed.</p> <p>Datalogging/interval monitoring/historical trend data is typical. Duration is a professional judgment and depends on the patterns of variability in the measured quantities. Sufficient</p>	<p>Large projects: Capital claimed through SEM program or BRO</p>	<ul style="list-style-type: none"> ■ Confirmation of project implementation (email or other confirmation) ■ Project narrative including: <ul style="list-style-type: none"> » A thorough description of the project implemented and how the savings were achieved. Details of the implemented measure » A clear description of the location of upgrade » The baseline equipment/operation (equipment #, size, operating hours etc. » The expected post-installation equipment/operation and specifically how it has changed between the baseline and post implementation phases. » Confirm annual hours of runtime through conversations with site personnel, control systems, logs, or trends, and provide supporting documentation. ■ Justification of assumptions used. ■ Confirm quantities, schedule, setpoints, loading, performance improvement, performance issues as applicable. ■ Must provide at least 4 additional supporting documentation items. <ul style="list-style-type: none"> » Nameplates/specifications » Setpoints, gauge readings, » Screenshots from control systems (such as SCADA or EMIS). » Spot measurements, » Short - or long- term data trends » Other data from end user or vendors including quotes or other project details.

5. Annex

		<p>duration is needed to capture the operating modes needed to extrapolate monitored results to an annual basis.</p> <p>Calculation Approach: Calculations will use collected site information, data logging or site provided data, and engineering judgement. Calculations will account for production variation, any seasonal weather variation, and Non-Routine Events, if applicable. Calculations may involve bin analyses, modeling tools, or may use PA-approved tools if applicable. Cascading effects between EPAs will be taken into account, if applicable.</p>		
--	--	---	--	--

5. Annex

5.6 Annex D – Multicollinearity and Autocorrelation

5.6.1 Multicollinearity

Multicollinearity is present when two or more relevant variables in a regression model are correlated between themselves. When two relevant variables are correlated, including both variables, instead of just one, may not add appreciably to the model's explanatory power.

Keep the following points in mind when validating an adjustment model:

- The presence of correlated variables should serve as a warning that the statistical significance of a variable in a particular regression model does not, by itself, indicate how closely that variable is correlated with energy consumption. The modeler should use caution in excluding any variables that may actually be relevant variables, but are masked by correlated variables.
- Multicollinearity has limited influence on the predictive capability of the final model if operating conditions stay relatively consistent. However, if the relationship between the correlated relevant variables changes during the Reporting Period, the model will lose predictive power.
- Multicollinearity can be identified by using XY scatterplots to view the relationship between two relevant variables. Additionally, the coefficients in a model will swing drastically if a variable with multicollinearity is added or removed.
- Perform a general assessment of multicollinearity by regressing each variable against the other hypothesis variables and examine the R² of each relationship. As a rule of thumb, any bivariate correlation with R² > 0.7 is an indication that multicollinearity needs to be carefully considered in the variable selection process.
- Multicollinearity can also be identified by calculating the variance inflation factor (VIF), which describes the increase in standard error compared to the standard error if the variable were uncorrelated with the other predictor variables.
- The simplest solution to addressing multicollinearity is to drop one of the variables from the regression analysis. However, this approach may negatively affect the model's predictive capability. The modeler should use his/her best engineering judgment along with an understanding of how the customer's site uses energy to include or exclude variables, while considering factors such as data availability and model complexity.

EXAMPLE: At a soft drink bottling site, energy consumption and production increase in the summer, due to higher seasonal sales. Both energy and production show a strong correlation with ambient, dry bulb temperature. The modeler includes the production variable in the adjustment model, but is unsure whether to include the ambient temperature variable. In this example, plot the production variable against the temperature variable to determine the correlation. If the R² is greater than 0.7, consider removing the temperature variable from the model. Justify the decision using engineering knowledge about the temperature dependency of equipment and loads at the site.

5. Annex

5.6.2 Autocorrelation

2717 Autocorrelation is present when the error term in a time period is related to the error term in a prior time
2719 period. In other words, autocorrelation is characterized by a correlation in the residuals.

2720 Calculate the autocorrelation coefficient and plot model residuals over the Baseline Period. If autocorre-
2721 lation is detected, the number of independent baseline points is effectively reduced. The typical remedy
2722 involves increasing the sample size, or selecting a different data interval. For annual models with daily
2723 baseline intervals, moderate autocorrelation may not be a concern.

2724 According to ASHRAE Guideline 14:2014, for monthly data an assumption that autocorrelation is 0 so n'
2725 is equal to n .

2726 Typically, regression-based energy models exhibit positive autocorrelation. Positive auto-correlation oc-
2727 curs when the sign change of the residuals is infrequent. Conversely, too frequent sign changes in the
2728 residual pattern results in negative autocorrelation.

2729 There is no defined threshold for the autocorrelation coefficient in the model development phase. Auto-
2730 correlation becomes a factor in the fractional savings uncertainty analysis when it has the mathematical
2731 effect of reducing performance period energy data samples.

2732 The Durbin-Watson test can also be used to determine if autocorrelation is statistically significant. For
2733 uncorrelated errors, the Durbin-Watson number, d , should be approximately 2. The upper and lower
2734 bounds for the Durbin-Watson statistic are a function of sample size, the number of predictor variables
2735 and desired confidence level.

5. Annex

2736 5.7 Annex E – Graphical Representation of the Table of Competing Models

2737 A graphical representation of the table of competing models is provided below. Refer to [Section 3.7.4](#) for
2738 details.

5.8 Annex F – Fractional Savings Uncertainty Scenarios

Daily Model68% confidence, 365 baseline intervals,
90 reporting intervals

CV	F(%savings)				
	2.5%	5.0%	10.0%	15.0%	20.0%
0.03	23%	12%	6%	4%	3%
0.05	46%	23%	12%	8%	6%
0.10	92%	46%	23%	15%	12%
0.15	139%	69%	35%	23%	17%
0.20	185%	92%	46%	31%	23%
0.30	277%	139%	69%	46%	35%

68%	confidence
1.00	T-stat
365	baseline intervals
90	reporting intervals
0.5	autocorrelation coefficient
121.67	n-prime

Weekly Model68% confidence, 52 baseline intervals,
13 reporting intervals

CV	F(%savings)				
	2.5%	5.0%	10.0%	15.0%	20.0%
0.03	47%	23%	12%	8%	6%
0.05	93%	47%	23%	16%	12%
0.10	187%	93%	47%	31%	23%
0.15	280%	140%	70%	47%	35%
0.20	374%	187%	93%	62%	47%
0.30	561%	280%	140%	93%	70%

68%	confidence
1.00	T-stat
52	baseline intervals
13	reporting intervals
0.25	autocorrelation coefficient
31.20	n-prime

Monthly Model68% confidence, 12 baseline intervals,
3 reporting intervals

CV	F(%savings)				
	2.5%	5.0%	10.0%	15.0%	20.0%
0.03	82%	41%	20%	14%	10%
0.05	164%	82%	41%	27%	20%
0.10	327%	164%	82%	55%	41%
0.15	491%	246%	123%	82%	61%
0.20	655%	327%	164%	109%	82%
0.30	982%	491%	246%	164%	123%

68%	confidence
1.04	T-stat
12	baseline intervals
3	reporting intervals
0	autocorrelation coefficient
12.00	n-prime

Notes:

ASHRAE guidelines specify 50% uncertainty at 68% confidence.

100% uncertainty means that the savings are not negative.

Uncertainty higher than 100% means there is a chance that savings are negative.

Monthly models will generally not show autocorrelation.

Daily and weekly models will generally show autocorrelation. Usually the addition of production data lowers the autocorrelation.

5. Annex

5.9 Annex G – Cumulative and Incremental Savings Example

This annex provides a six-year example of how incremental energy savings would be calculated assuming an energy consumption adjustment model was valid for that full time period. Two scenarios of the same example are provided based upon an assumption of how backsliding would be reported.

5.9.1 Scenario 1: Backsliding reported as 0 energy savings:

SEM Program Year	Cumulative M&V Boundary Energy Savings	Incremental M&V Boundary Energy Savings
1	200,000	200,000
2	300,000	100,000
3	250,000	0
4	500,000	200,000
5	600,000	100,000
6	550,000	0

Table 6: Example of Cumulative and Incremental Energy Savings and not Reporting Negative Savings

Note that SEM Program Years 3 and 6 showed backsliding and a reduction of cumulative M&V Boundary Energy Savings. It is assumed the implementer could not show any reason why such backsliding should occur due to the SEM program (for example multiple EPIAs were installed in the Reporting Periods) and so a reported energy savings value of 0 was claimed. [See Section 4.1.6](#) for more details.

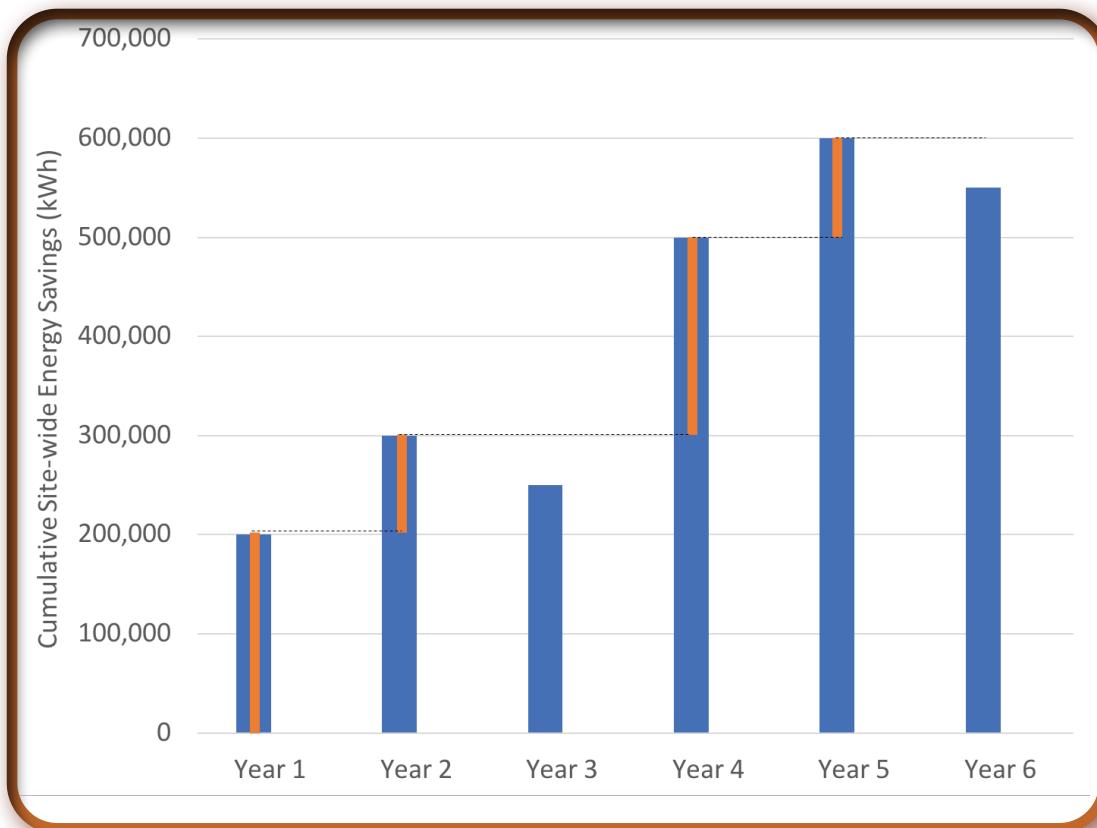


Figure 8: Example of Cumulative and Incremental Energy Savings and not Reporting Negative Savings.

In this chart blue bars are cumulative energy savings, orange bars are reportable incremental savings.

5. Annex

5.9.2 Scenario 2: Backsliding claimed as negative energy savings values.

If the implementer showed reason for the backsliding, or could not show evidence the SEM program was taking positive actions to reduce energy consumption such as the implementation of EPIAs, then the energy savings values of -50,000 kWh should be claimed in SEM Program Years 3 and 6. An updated table of savings and figure assuming this approach is taken is shown below

SEM Program Year	Cumulative M&V	Incremental M&V
	Boundary Energy Savings	Boundary Energy Savings
1	200,000	200,000
2	300,000	100,000
3	250,000	-50,000
4	500,000	250,000
5	600,000	100,000
6	550,000	-50,000

Table 7: Example of Cumulative and Incremental Energy Savings and Reporting Negative Savings

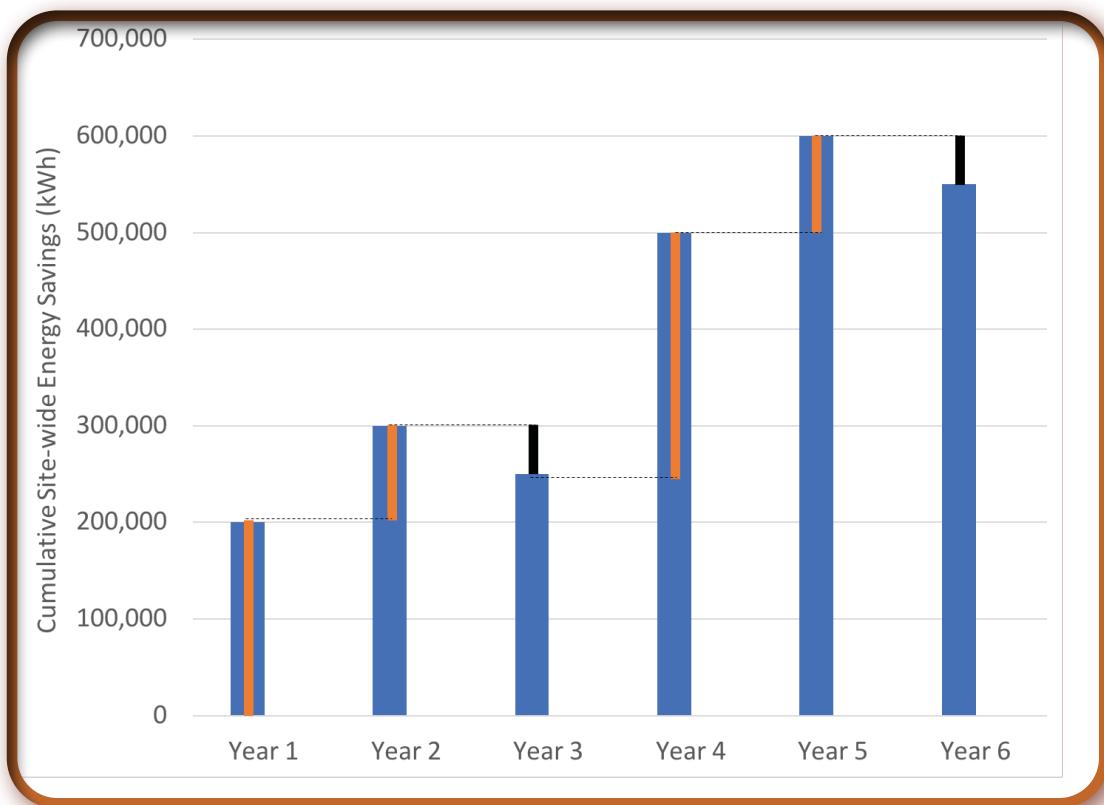


Figure 9: Example of Cumulative and Incremental Energy Savings and Reporting Negative Savings.

In this chart blue bars are cumulative energy savings, orange bars are reportable incremental savings, and black bars are reported negative savings.

5. Annex

5.10 Annex H – Total System Benefits

2758 This Annex provides information pertaining to the concept of Total System Benefits (TSB).

2760 TSB has the potential to help calculate benefit attributions to integrated energy savings (IDSM) projects
 2761 that include various energy efficiency and non-energy efficiency technologies at a customer's site. Be-
 2762 cause SEM is a whole site energy savings program strategy, having a way to calculate the benefits of
 2763 an IDSM approach is helpful as identified in the Assigned Commissioners Ruling issued in October of
 2764 2008.¹² For this reason a draft SEM Demand Savings Calculator, utilizing the TSB concepts summarized
 2765 above, was developed to serve as an illustrative tool to begin to understand how various demand side
 2766 technologies interact for program planning purposes. While utilizing this tool is not a requirement of the
 2767 SEM program, further refinement of it (ex; updating load profiles used as an input), will continue to help
 2768 further inform consideration of IDSM as a part of the overall SEM program design (see Section 4.2).

2769 This Annex provides quotes taken from the CPUC document, "Total System Benefit Technical Guidan-
 2770 ce," Version 1.2, released October 25, 2021. CPUC authors state that this document is, "CPUC staff-level
 2771 guidance introduces and describes the calculation steps for the Total System Benefit (TSB) metric im-
 2772 plemented by D.21-05-031." All statements in quotation marks in this section are direct quotes from the
 2773 CPUC technical guidance document.

2774 The provided statements are intended to be informative about changes the CPUC is making on how it
 2775 will be valuing ratepayer funded energy efficiency programs. The statements focus on information that
 2776 may help in making changes in program and M&V approaches in the future.

2777 PA staff should be consulted for full and up to date details about TSB.

2778 The TSB metric creates, "a single goal expressed in dollars, which represents the value of the energy effi-
 2779 ciency resources to the grid." In short, the TSB metric will encourage PAs to, "optimize portfolios to save
 2780 energy during high value hours."

2781 "The TSB metric was adopted in D.21-05-031 as the official metric for energy efficiency portfolio planning
 2782 starting in 2024, but PAs should informally file and report on the metric in program years 2022 and 2023."
 2783 "Starting in 2024, the TSB metric will replace kWh, kW, and Term as the primary goal for the energy effi-
 2784 ciency portfolios administered by the California investor-owned utilities and other program administra-
 2785 tors."

2786 TSB will, "encourage program administrators to pursue energy savings that deliver high value in some or
 2787 all of the avoided cost categories:

- 2788 ■ Energy,
- 2789 ■ Generation capacity,
- 2790 ■ Ancillary services,
- 2791 ■ Transmission and distribution capacity,
- 2792 ■ High global warming potential (GWP) gases, and
- 2793 ■ GHGs."

¹²This ruling identified the following priorities for implementation of IDSM activities: 1) comprehensive and coordinated marketing, packaging and delivery including outreach and education of customers and presentation of program options in a unified fashion to customers, 2) operational improvements including offering integrated audits and recommendations, combining EE, DR, DG, and other applicable incentives in the same project, and 3) optimization including equipment that enables multiple DSM options (EE, DR, etc.) and provide synergy across DSM program types (p.7).

5. Annex

2794 "The GHG costs include both carbon (expressed through the GHG adder) and high global-warming po-
 2795 tential gasses, such as methane and refrigerants."

2796 As TSB looks to quantify the value of energy efficiency to the grid, the time at which energy savings are
 2797 realized is important. Because the SEM M&V process tracks actual energy consumption with as much
 2798 fidelity as possible, data from the SEM program could be of value in developing actual TSB time of ener-
 2799 gy savings value as compared to industry average load shapes that may not reflect a customer's actual
 2800 operations.

2801 5.11 Annex I – Revision History

2802 The below table documents changes made to this M&V Guide.

Version and Date	Section	Change
0,	Document	Version 4.0 Released

Table 8: Revision History.

Sergio Dias Consulting is a professional consulting firm that provides strategic expertise to sustainability, decarbonization, and industrial energy efficiency programs, government organizations, energy utilities, policy makers, and companies. With over 30 years of sustainability, business, industry and energy efficiency experience and an extensive network, our company:

- Develops and designs sustainability, decarbonization, and energy efficiency programs, policies and strategic plans.
- Assesses the effectiveness of existing programs, policies and plans.
- Designs “Market Transformation” programs.
- Evaluates the impact of sustainability, decarbonization, and energy efficiency programs.
- Provides support for the launch of new programs.

Sergio Dias Consulting is at the forefront of the sustainability, decarbonization and energy efficiency fields and has led projects with international manufacturers, energy utilities, regional industry associations, state and federal government agencies, and non-profit organizations. Our leading-edge work on Decarbonization, Market Transformation and Strategic Energy Management strategies is recognized internationally.

For more information see
www.sergiodiasconsulting.com