2025-2026 TPP RESOLVE Modeling Results

September 12, 2024

California Public Utilities Commission

Contents

- Overview of 25-26 TPP Proposed Portfolio Analysis
- Input updates for 25-26 TPP Modeling
- 25-26 TPP Proposed Base Case Portfolio
 - RESOLVE Modeling Results: 25-26 TPP Proposed Base Case Portfolio
 - Base Case Comparison to 24-25 TPP and 23-24 TPP Base Cases
 - Summary & Conclusions
- Staff Recommended and Alternate Options for the 25-26 TPP Sensitivity Portfolio
 - RESOLVE Modeling Results: Options for the 25-26 TPP Sensitivity Portfolio
 - Sensitivity Portfolio Results: Alternate LLT (2035 LSE Plans)
 - Sensitivity Portfolio Results: Recommended LLT (2030 LSE Plans)
- Appendices
 - Appendix I: Input Updates Across Recent TPP Cycles
 - Appendix II: Additional RESOLVE modeling results
 - Appendix III: Transmission Information for TPP analyses

Overview of 25-26 TPP Proposed Portfolio Analysis

Overview of the CAISO's Transmission Planning Process

- Every year Commission staff develop a recommended set of portfolios for the California Independent System Operator (CAISO) to use in its annual Transmission Planning Process (TPP)
- Generally, in each TPP cycle, the CAISO evaluates a reliability and/or policy-driven base case portfolio
 - Under the CAISO tariff adopted by the Federal Energy Regulatory Commission (FERC), if the results of the base
 case analysis show the need for additional transmission development, the transmission projects are brought to
 the CAISO Board for approval in the spring of the second year of the TPP
 - If approved by the CAISO Board, under the FERC tariff, the project would receive cost recovery through the transmission access charge
- Along with the base case analysis that generally leads directly to transmission project approval, in each TPP cycle the CAISO typically analyzes one or more sensitivity portfolios.
 - The purpose of the sensitivity portfolio analysis is not to lead directly to transmission development immediately, but rather to assist in future planning by identifying relevant transmission needs and potential costs.
- The Commission adopted the 2024-25 TPP portfolio in Decision (D.)24-02-047. This Decision included both a base case and a sensitivity portfolio that the CAISO is in the process of analyzing for the current TPP cycle.
 - The base case portfolio was based on the scenario that achieves a 25 million metric ton (MMT) greenhouse gas (GHG) emissions target in 2035, including 4.5 gigawatts (GW) of offshore wind.
 - The sensitivity portfolio was a High Natural Gas Retirement scenario, designed to assist in planning for the potential future retirement of fossil-fueled resources as their economics decline.

Overview of 25-26 TPP Analysis

- Staff has conducted analysis to support the development of portfolios for consideration for study in CAISO's 25-26 TPP
 - The analysis is based on the 24-25 TPP portfolio that the Commission adopted in <u>D.24-02-047</u>
- This deck includes analysis for two TPP portfolio classifications:
 - A proposed 25-26 TPP Base Case
 - Two options for a 25-26 TPP sensitivity cases, including ED Staff's recommended portfolio
- Staff will transmit a single Base Case portfolio and can consider transmitting an additional sensitivity portfolio to the CAISO for their TPP
 - This deck includes two sensitivity cases under consideration, and Staff will select a single portfolio depending on stakeholder feedback.
 - Stakeholders can submit feedback on which direction to pursue on the sensitivity portfolio in comments submitted to the docket.
- Staff is seeking stakeholder comments on the Administrative Law Judge's Ruling Seeking Comment on Electricity Resource Portfolios for 2025-2026 Transmission Planning Process:
 - Opening comments on are due on September 30, 2024
 - Reply comments are due on October 7, 2024

Input Updates for 25-26 TPP Modeling

Summary of Input Updates for 25-26 TPP

- IRP periodically updates its modeling inputs and assumptions to reflect new data, better modeling functionality, and other changes as needed
- Updates for the 25-26 TPP modeling are compared to what was used in the 24-25 TPP portfolios adopted in D.24-02-047

Changes in Transmission	 Added new resource interconnection limits in RESOLVE on
and Interconnection	each transmission constraint cluster based on number and
Representation	voltage of buses in the cluster
Load Inputs	 Switched from 2022 IEPR to 2023 IEPR Higher annual load and peak forecast, especially in 2035+
Geothermal Resource Cost	 Binary technology represented instead of Flash 30% cost increase
Arizona Solar	 Corrected Arizona Solar candidate resource profile to
Profiles	reflect daylight savings time adjustment

Changes in Transmission and Interconnection Representation in the 25-26 TPP

- For the 24-25 TPP, RESOLVE selected multiple GWs of resources at transmission clusters that are comprised of only a few individual substations.
 - Since those substations cannot accept such large capacity additions, many resources had to be relocated during Busbar Mapping.
- For the 25-26 TPP, additional constraints were added to the RESOLVE model to represent feasible limits on resource interconnection at the substation level.
- Substations are assigned a default interconnection capacity according to voltage, and limits are set for each cluster by summing across all substations.
- Individual substation expansions are not represented, but RESOLVE can choose to build generic transmission upgrades to interconnect highly economic resources.
- Actual mapping to individual substations or to a new substation, if warranted, is still performed in the Busbar Mapping process.

Substation Voltage (kV)	Default Interconnection Capacity (MW)
115	100
138	200
161	200
230	1,500
500	3,000

Integrated Energy Policy Report (IEPR) Updates

- RESOLVE's load inputs were updated from CEC's 2022 IEPR CED to the 2023 IEPR CED (revised version). Updates include:
 - Annual energy
 - Gross peak
 - BTM resources
 - Hourly profiles
 - Associated changes in total reliability need and clean energy generation requirements for RPS, SB100 and SB1020
- The CEC produced the 2023 IEPR forecast for 2023-2040 while the TPP modeling horizon is 2024-2045, necessitating extrapolation of the CEC's load forecast.
 - Post-2040 extrapolation methods differ from methods used for the 24-25 TPP for the 2022 IEPR.
 - Supplemental data for 2041-50 was available to derive a growth rate for BTM resources
 - The baseline was extrapolated using the growth rate for the last five years of data (2035-40); whereas the 2022 IEPR was extrapolated using the 2021 ATE forecast

Summary of Changes in 2023 IEPR from 2022 IEPR

- The 2023 IEPR Planning Scenario shows higher retail sales and gross peak than the 2022 IEPR
 - The gross peak¹ in 2035 is 3.5 GW higher, and in 2045 is 3.1 GW higher in the 2023 IEPR forecast compared to the 2022 Forecast, an increase of 5% and 4%, respectively
 - Annual retail sales increase by 6.4 TWh in 2035, or 3%, and 20 TWh in 2045, or 7%
 - In the long-term, annual load grows faster than peak due to high rates of space heating electrification
- Higher retail sales and gross peak in the 2023 IEPR are driven by increased building electrification (AAFS) and lower energy efficiency (AAEE) impacts compared to 2022 IEPR. Additionally, the 2023 IEPR shows lower BTM PV adoption in the long term
- Managed net peak load shifts to winter in early 2040s due to building electrification
 - Building electrification loads are 4-5x higher in 2023 IEPR after 2035

Gross System Peak and Total Managed Retail Sales

Note: Gross peak is Managed Net Load + BTM PV

Note: Assumes no CHP retirement

11

Note: the 2023 IEPR shows a higher near-term gross peak than the 2022 IEPR, but a lower near-term managed peak (after BTM PV production). This is due to changes to the IEPR baseline consumption shapes between IEPR vintages. IRP uses the gross peak for planning (showing increased reliability need) whereas RA uses the managed peak for planning (showing decreased reliability need).

Resource Cost Update

- The 24-25 TPP used flash geothermal costs from the 2023 NREL ATB
- The 25-26 TPP uses binary geothermal costs from the 2023 NREL ATB as a more realistic technology for future geothermal build

Technology	Cases Used For	All-in fixed Cost (2022\$/kW-yr)	
Geothermal – Flash	24-25 TPP	\$520/kW-yr	
Geothermal – Binary	25-26 TPP	\$660/kW-yr	~30% increase

25-26 TPP Proposed Base Case Portfolio

25-26 TPP Proposed Base Case

Proposed 25-26 TPP Base Case Overview

- Proposed base case designed to be similar the 2024-25 TPP base case with same policy assumptions
 - Incorporates the 25 MMT GHGH target by 2035 (same as for the 24-25 TPP)
 - Includes LSE plans submitted in their November 2022 IRP filings (same as for the 24-25 TPP)
 - Using same resource baseline and Inputs & Assumptions outside of the changes noted earlier
 - Updated to the 2023 IEPR Planning Scenario (24-25 TPP base case used the 2022 IEPR Planning Scenario)
- Key model years for busbar mapping and transmittal to CAISO
 - 2035 10-year projection
 - 2040 15-year projection

RESOLVE Modeling Results: 25-26 TPP Proposed Base Case Portfolio

25-26 TPP Proposed Base Case Planned & Selected Capacity (GW)

• New resources (nameplate GW), both LSE planned and RESOLVE selected, above the IRP-RESOLVE modeling resource baseline

25-26 TPP Proposed Base Case

LSE Planned Builds vs. RESOLVE-Selected Builds (GW)

* LSE plans only go out to 2035

California Public Utilities Commission

Note: A portion of LSE Planned wind is generic (not specified as in-state or out-of-state) and can be sited optimally by RESOLVE. For the purposes of this graph, any generic wind in the LSE plans is allocated based on the share of RESOLVE-selected wind in 2035 (approximately 50% each in-state and out-of-state). Note: All Capacity is incremental to the 2023 Baseline (https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-division/documents/integrated-resource-plan-and-long-term-procurement-plan-irp-ltpp/2023-irp-cycle-events-and-materials/aggregated-lse-plans-and-baseline-resources-2023-psp_v2.xlsx)

25-26 TPP Proposed Base Case Planned & Selected Capacity (GW)

• New resources (nameplate GW), both LSE planned and RESOLVE selected, above the IRP-RESOLVE modeling resource baseline

Resource Category	2026	2028	2030	2032	2034	2035	2039	2040	2045
Natural Gas	-	-	-	-	-	-	-	-	-
Geothermal	0.8	1.1	1.5	1.6	1.6	1.6	1.6	1.6	1.6
Biomass	-	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
In-State Wind	0.7	1.0	5.2	7.0	7.0	7.9	7.9	7.9	9.0
Out-of-State Wind	1.8	3.4	4.7	4.7	7.0	9.0	9.1	10.7	15.7
Offshore Wind	-	-	-	2.7	3.9	4.5	4.5	4.5	4.5
Solar	5.5	8.5	14.8	16.3	19.8	19.8	42.6	44.9	61.8
Li-ion Battery (4-hr)	8.0	9.0	11.6	12.7	15.0	15.7	15.7	15.7	15.7
Li-ion Battery (8-hr)	0.4	1.0	1.2	1.4	1.9	2.8	11.2	12.0	21.1
Pumped Hydro Storage (12-hr)	-	0.5	0.5	0.8	0.8	0.8	0.8	0.8	0.8
Long Duration Storage (8-24 hr)*	0.1	0.3	0.3	0.4	0.5	0.5	0.5	0.5	0.5
Shed DR	-	-	-	-	-	-	-	-	-
Gas Capacity Not Retained	-	-	-	-	-	-	-	-	(3.5)
Total	17.3	25.1	40.0	47.7	57.7	62.9	94.1	98.8	127.4

California Public Utilities Commission

*Long Duration Storage technologies include Flow Battery (8-hr) and A-CAES (24-hr)

25-26 TPP Proposed Base Case **PRM** Constraints

RESOLVE modeling results ٠

Additional resources above those in the LSE plans are only required to meet reliability requirements from mid 2030s; earlier than the 24-25 TPP due to increased system peak in the 2023 IEPR forecast

Natural gas resources provide ~20 GW of capacity throughout the study horizon

(\$/kW-year) PRM is binding starting in mid-2030s \$249 ^{\$302} \$338 \$12

Most incremental capacity needs are met with solar and storage. Geothermal and wind also provide incremental resource adequacy.

25-26 TPP Proposed Base Case

GHG Constraints

• RESOLVE modeling results

GHG Emissions $(MMT CO_2)$ New clean resources are added to help meet GHG emissions target in all modeled 45 years, except 2026 when GHG emissions of 40 the portfolio is below the target 35 30 BTM CHP, and associated GHG emissions, 25 Unspecified Imports assumed to phase out between 2035 and BTM CHP 20 2040. CAISO Gas 15 CAISO Coal 10 Total Emissions Target 5 **GHG Target Shadow Price** $(\text{mod} CO_2)$ GHG target is binding by 2028 0 2028 2030 2032 2034 2000 2000 2040 2026 2045 \$422 600 \$252 \$223 400 \$98 \$112 \$103 \$63 200 \$16 \$0 0 2030 2034 2035 2009 2040 2045 2026 2032

In the terminal year of 2045, the cost rises steeply to meet the stringent 2045 GHG target.

Base Case Comparison to 24-25 TPP and 23-24 TPP Base Cases

Comparison of 23-24 TPP, 24-25 TPP, 25-26 TPP Proposed Base Case

25-26 TPP Proposed Base Case vs. 24-25 TPP vs. 23-24 TPP

	25-26 TPP Proposed Base Case	24-25 TPP	23-24 TPP
IEPR Vintage	2023	2022	2021 ATE
2035			
Peak load (GW)	67.5	64.0	66.5
Annual energy demand (TWh)	332	322	336
Total resources selected (GW)	62.9	56.8	73.0
Gas selected (GW)	-	-	0.1
Gas not retained (Negative = not retained)	-	- 2.7	-
2040			
Peak load (GW)	74.4	70.0	74.9
Annual energy demand (TWh)	386	364	404
Total resources selected (GW)	98.8	81.0	106.6
Gas selected (GW)	-	-	4.8
Gas not retained (Negative = not retained)	-	- 2.7	-
Annual Costs Net Present Value (NPV)			
Est. Annual Costs (\$MM)*	\$228,677	\$222,515	\$263,099

Note: 2023 builds in 23-24 TPP are removed in results shown to enable more consistent comparison; costs for 23-24 TPP converted from 2019\$ to 2022\$

25-26 TPP Proposed Base Case vs. 24-25 TPP Base Case

Comparison of Planned & Selected Capacity (GW)

RESOLVE Builds Across Portfolios

- Additional resource buildout is driven by a higher peak in 2023 IEPR (used in 25-26 TPP) than in 2022 IEPR (used in 24-25 TPP)
- The 24-25 TPP vs. 25-26 TPP **difference in resource buildout is largest in 2039**, consistent with when the 2022 vs. 2023 IEPR peak load difference is largest
- In 2039, 12.4 GW more solar is built, partially to serve increased energy needs and partially for capacity
- In 2045, an additional 3.0 GW gas is retained in ⁴⁰ the 25-26 TPP, and all gas is retained prior to 2045
- Due to increased winter loads, builds in 25-26 TPP shift from in-state to out-of-state wind, as out-of-state wind has higher winter capacity factors
- Additional 8-hr batteries, and pumped hydro are selected; less geothermal

<u>NPV</u> of optimized costs* (\$MM in 2022 Dollar Year, 2024-2065)					
25-26 TPP (Revised IEPR)	\$228,677 (+\$6,162 MM or +3%)				
24-25 TPP**	\$222,515				
California Public Utilities Commission					

<u>Annual</u> Optimized Costs (\$MM)	2034	2035	2039	2040	2045
25-26 TPP (Revised IEPR)	14,473 (+\$144M)	14,764 (+\$721M)	17,391 (+\$2,281M)	18,137 (+\$2,531M)	19,842 (+\$2,328M)
24-25 TPP	13,929	14,045	15,110	15,606	17,514

* Excludes non-optimized costs, which represent ~~75-80% of system costs **Minor correction to CHP cost made since results were originally released

Comparison of 23-24 TPP, 24-25 TPP, 25-26 TPP Proposed Case

(GW)

Comparison of Planned & Selected Capacity (GW)

- Differences in resource buildout are driven by differences in **load**, **resource** economics, and GHG targets
- The 23-24 TPP used the 2022 NREL ATB, which did not reflect IRA incentives or significant increases for battery cost in recent years as a result
- The 2021 IEPR (used in 23-24 TPP) has significantly higher (8-12%) annual loads by 2045, which combined with different resource economics modeled, results in significantly larger amounts of solar and long duration storage in 23-24 TPP*
- The 23-24 TPP has a less stringent GHG target by 2045 (15 MMT vs. 8 MMT), allowing for new gas build
- All three TPP portfolios have similar amounts of geothermal, out-of-state wind, and offshore wind build
 - 23-24 TPP was modeled with lower i state wind potential, which led to lower amounts of in-state wind build

Note: 23-24 TPP modeled 4-hr and 8-hr batteries in aggregate; these are separated for the purpose of this analysis based on
 23-24 TPP was modeled with lower in- the average battery duration of the 23-24 TPP portfolio

Note: 2023 builds and other baseline differences in 23-24 TPP are removed in results shown to enable more consistent comparison

*Long Duration Storage in the 23-24 TPP are 8-hour Flow Batteries, which were not subject to transmission constraints. Biomass was also not subject to transmission constraints in the 23-24 TPP

**2045 is not used in the TPP planning portfolio

RESOLVE Builds Across Portfolios

25-26 TPP Proposed Base Case vs. 24-25 TPP

Planned & Selected Capacity (GW) – Delta from 24-25 TPP

Increase in out-of-state wind driven by increased winter loads (driven by 4-5x more building electrification) and transmission constraints***

Increased geothermal costs contributed to slightly reduced geothermal build

Resource Category	2026	2028	2030	2032	2034	2035	2039	2040	2045
Natural Gas	-	-	-	-	-	-		-	-
Geothermal	-	-	-	(0.2)	(0.3)	(0.3)	/ (0.3)	(0.3)	(0.3)
Biomass	-	-	-	-	-	-	-	-	-
In-State Wind	(0.2)	(0.0)	(0.8)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.3)
Out-of-State Wind	0.2	0.0	0.2	0.2	1.7	2.7	0.8	2.4	3.8
Offshore Wind	-	-	-	-	0.0	-	-	-	-
Solar	(1.3)	(1.4)	-	0.6	0.8	0.8	11.9	9.9	4.4
Li-ion Battery (4-hr)	-	-	-	-	-	-	-	-	-
Li-ion Battery (8-hr)	-	-	-	-	0.2	-	4.0	3.0	1.6
Pumped Hydro Storage (12-hr)	-	-	-	0.3	0.3	0.3	0.3	0.3	0.3
Long Duration Storage (8-24 hr)*	-	-	-	-	0.1	-	-	-	-
Shed DR	-	-	-	-	-	-	-	-	-
Gas Capacity Not Retained**	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	3.1
Total	1.3	1.3	2.1	3.5	5.4	6.1	19.2	17.8	12.5

More gas retained to serve higher reliability need

Significantly more solar buildout in 2039 and 2040 due to higher GHG-free energy needs to meet IEPR's higher peak load

*Long Duration Storage technologies include Flow Battery (8-hr) and A-CAES (24-hr); **Positive Value = More Gas Retained 25 ***Out-of-state wind provides higher CF than in-state wind, offshore wind, or solar resources, which is valuable for serving winter building electrification load

25-26 TPP Proposed Base Case vs. 23-24 TPP

Planned & Selected Capacity (GW) – Delta from 23-24 TPP

23-24 TPP built new gas from 2035 onward due to higher loads and a less stringent emissions target

Resource Category	2026	2028	2030	2032	2034	2035	2040	2045
Natural Gas	-	-	-	-	-	(0.1)	(4.8)	(8.2)
Geothermal	(0.0)	0.3	0.7	0.8	0.1	0.1	(0.4)	(0.4)
Biomass	(0.0)	0.1	0.1	0.1	0.1	0.1	(0.9)	(0.9)
In-State Wind	(1.5)	(1.1)	3.0	4.8	4.8	5.7	4.3	5.4
Out-of-State Wind	1.5	(1.4)	(0.1)	(0.1)	2.2	4.2	(3.0)	2.1
Offshore Wind	(0.1)	(0.2)	(3.1)	(0.5)	0.6	(0.2)	(0.2)	(0.2)
Solar	1.1	2.6	(0.0)	(6.7)	(5.6)	(12.7)	(1.5)	(28.9)
Li-ion Battery (4-hr)	5.3	6.1	8.7	9.8	12.1	12.8	12.8	12.8
Li-ion Battery (8-hr)	0.4	1.0	(1.0)	(6.6)	(8.5)	(14.2)	(8.4)	(0.5)
Pumped Hydro Storage (12-hr)	(0.2)	(0.5)	(0.5)	(0.2)	(0.8)	(1.2)	(1.2)	(1.2)
Long Duration Storage (8-24 hr)*	0.1	0.3	0.3	0.4	0.5	0.5	0.5	(12.1)
Shed DR	(1.0)	(1.0)	(1.0)	(1.0)	(1.0)	(1.0)	(1.0)	(1.0)
Gas Capacity Not Retained**	-	-	-	-	-	-	-	(3.5)
Total	5.5	6.1	7.0	0.7	4.4	(6.1)	(3.8)	(36.7)
Note: 2039 is excluded from comparisor Note: 23-24 TPP modeled 4-hr and 8-hr k	n since 2039 was patteries in agai	s not modeled i regate; these a	n the 23-24 TPP re separated fo	r the purpose	25-26 TPP has h	iaber op od		

this analysis based on the average battery duration of the 23-24 TPP portfolio Note: 2023 builds in 23-24 TPP are removed in results shown to enable more consistent comparison 25-26 TPP has higher wind builds

23-24 TPP has significantly 23more solar and 8-hr battery build starting in 2035

California Public Utilities Commission

*Long Duration Storage technologies include Flow Battery (8-hr) and A-CAES (24-hr); **Positive Value = More Gas Retained

Summary & Conclusions

Conclusions

- Compared to the 2022 IEPR, the revised 2023 IEPR has higher demand and peak load, driving an increase in resource buildout
 - By 2040, the **25-26 TPP** has **10.6 GW more solar**, **3.2 GW more 8-hr battery storage**, and **2.7 GW more gas retained** than the 24-25 TPP
 - The revised 2023 IEPR also has **higher winter loads**, which drives a shift from in-state wind and solar to out-of-state wind
- The transmission constraint updates have also contributed to a shift in location of some resource buildout and geothermal cost updates have slightly reduced the geothermal selected by RESOLVE

Staff Recommended and Alternate Options for the 25-26 TPP Sensitivity Portfolio

Background – Purpose of Sensitivity

- In addition to the Proposed 25-26 TPP Base Case, Staff are proposing to pass one sensitivity portfolio to the CAISO focused a higher Long Lead-Time (LLT) resource deployment future.
 - Considered two options for the sensitivity portfolio: the Staff Recommended and the Alternate sensitivity portfolios.
 - More information about the differences between these two proposed sensitivity portfolios is available on the following slide.
- The recently adopted AB 1373 related Decision (D.) 24-08-064 contained a need determination for specific LLT resources for potential procurement by the Dept. Of Water Resources.
 - Identified a need for up to 7.6 GW of offshore wind (OSW), 2 GW of long duration energy storage (LDES), and 1 GW of geothermal in addition to existing procurement orders.
 - The amounts of OSW and LDES have not previously been studied in any TPP base case or in a sensitivity case that reflected a reasonable alternate scenario to the TPP base case.*
- The two potential sensitivities options both depict a potential LLT resource deployment future reflective of the upper bound of the AB 1373 Decision need determination
 - Designed to serve as reasonable alternative scenarios associated with the proposed base case
 - Provide insights into transmission implications and resources that are displaced from more LLTs being in the portfolio

*While the 23-24 TPP OSW Sensitivity included 13.4 GW of OSW and the 24-25 TPP High Gas Retirement Sensitivity included 3.7 GW of LDES both portfolios were designed to gather long-term transmission information to inform future scenarios and do not reflect a likely or realistic deployment of the specific resources over the timeframe of the TPP studies.

Background – LLT Resource Amounts

- The two potential sensitivity options both differ from the proposed base case assumptions by having additional Long Lead-Time (LLT) resources forced-in, specifically geothermal, long duration energy storage (LDES), and offshore wind (OSW)) by 2035.*
 - Both options have the same total amount of OSW, geothermal, and LDES resources (see table below)
 - The OSW, geothermal, and LDES resource amounts reflects the upper bound of the potential LLT resources indicated for central procurement in the AB 1373 Decision (D.24-08-064).
 - Total amounts also account for the clean firm and long duration storage procurement requirements per the Mid-Term Reliability (MTR) Decision (D.21-06-035) adjusted for such resources already contracted and included in baseline.¹
 - Amounts assume little to no additional procurement by LSEs beyond MTR and AB 1373 Decision amounts for specified LLT resources (e.g., the 7.6 GW of OSW is the total amount modeled, including LSE plans)
 - LDES resources are represented as A-CAES and Pumped Hydro (the two 12+ hr duration storage resource options modeled in RESOLVE)

Case Name	Portfolio Name	Year LLTs forced-in*	Geothermal Build (MW)	A-CAES Build (MW)	Pumped Hydro Build (MW)	Offshore Wind Build (MW)	LSE Plan Configuration
	25-26 TPP Base Case	-	1,639	200	756	4,531	Full LSE plans
Alternate	LLT (2035 LSE Plans)	2035	2,139	900	1,777	7,555	Full LSE plans
Recommended	LLT (2030 LSE Plans)	2035	2,139	900	1,777	7,555	LSE plans through 2030

*Forced-in Geothermal, A-CAES, and Pumped Hydro may be selected by the model any time 2031-2035

¹ The modeling baseline for this analysis is available here: <u>https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-division/documents/integrated-resource-plan-and-long-term-procurement-plan-irp-ltpp/2023-irp-cycle-events-and-materials/aggregated-lse-plans-and-baseline-resources-2023-psp_v2.xlsx</u>

Background – Recommended vs Alternative Option

- The two potential sensitivity options differ in the amount of LSE planned resources forced-in
 - November 2022 LSE plans (same as used for 2023 PSP portfolio) are used; these LSE plans cover LSE planned resources additions through 2035
 - The Alternate portfolio is LLT (2035 LSE Plans), includes full LSE planned resources through 2035
 - The **Staff Recommended** portfolio is *LLT (2030 LSE Plans)*, includes LSE planned resources only through 2030
 - In 25-26 TPP base case, only 1 GW solar and batteries were selected in 2035 above LSE plans, meaning LLT
 resources have little flexibility to displace non-LLT resources if full LSE plans are forced-in. Forcing in LSE plans
 only through 2030 allows additional flexibility.
- To keep the total amount of AB 1373 LLT resources the same, the *LLT (2030 LSE Plans) Portfolio* includes more OSW, geothermal, and LDES resources manually forced-in, instead of through the LSE plans.
 - Figures compare breakdown of forced in resources for two sensitivity options and the proposed base case.

California Public Utilities Commission

RESOLVE Modeling Results: Options for the 25-26 TPP Sensitivity Portfolio

25-26 TPP Proposed Base Case vs. LLT Sensitivities

Comparison of Planned & Selected Capacity (GW)

- Compared to the 25-26 TPP, starting in 2035, about ~1 GW less solar and battery is built annually when additional, high-capacity factor LLT resources are added to the system
- By 2040, all three cases have similar amounts of onshore wind (<1 GW differences)
- All three cases retain all gas until 2045. In 2045, gas not retained totals 3.5 GW in the 25-26 TPP and ~4.5 GW in the LLT cases
 - 24-25 TPP had 6.6 GW not retained
- Forcing-in additional LLT resources increases total NPV costs by ~\$3-5 Billion

<u>NPV</u> of optimized costs* (\$MM in 2022 Dollar Year, 2024-2065)

LLT (2035 LSE Plans)	\$233,575 (+\$4,898 MM or +2.1%)
LLT (2030 LSE Plans)	\$231,930 (+\$3,253 MM or +1.4%)
25-26 TPP Proposed Base Case	\$228,677

<u>Annual</u> Optimized Costs (\$MM)	2035	2040	2045
LT (2035 LSE Plans)	15,650 (+\$886M)	18,616 (+\$479M)	20,396 (+\$554M)
LT (2030 LSE Plans)	15,232 (+\$468M)	18,449 (+\$312M)	20,232 (+\$390M)
25-26 TPP Proposed Base Case	14,764	18,137	19,842

*Costs relative to 25-26 TPP; Excludes non-optimized costs, which represent ~75-80% of system costs

Comparison of Planned & Selected Capacity (GW)

 Same comparison of the sensitivity portfolio options to the proposed 25-26 TPP base case as on the previous slide, but with arrow bars to denote resources forced-in vs resources selected by RESOLVE.

Resource Build Across Portfolios

25-26 TPP Proposed Base Case vs. LLT Sensitivities

2035 Portfolios Breakdown

- Resources in the 2035 proposed 25-26 TPP portfolio and two sensitivity options broken down into three categories.
 - Specified LLT resources (geothermal, offshore wind, > 8 hr LDES) from LSE plans and manually added
 - Remaining resource types (Solar, onshore wind, and 4- and 8-hr batteries) from LSE plans
 - All resource types selected by RESOLVE in addition to forced in resources

25-26 TPP Proposed Base Case vs. LLT Sensitivities

Further Comparison between Portfolios

- For the three portfolios, side-byside comparisons of the three categories described on previous slide.
- Includes additional category of RESOLVE selected resources in 2040.

25-26 TPP Proposed Base Case vs. LLT Sensitivity Options

Additional and Displaced Resources in Sensitivity Options

- Additional and displaced resources are shown relative to the proposed 25-26 TPP base case
- The additional 5.5 GW of LLT resources added in 2035 displaces ~12-13 GW of other resource builds by 2040
 - LLT resources mainly displace solar and batteries by 2040, plus small amounts of in-state wind
- LLT resources delay ~2 GW of out-of-state wind build from 2035 until 2040
- RESOLVE is allowed to build the forced-in geothermal and long duration storage starting in 2032
 - Some earlier build of geothermal and long duration storage is optimally selected to enable more displacement of solar and batteries otherwise needed 2032-2035
- With full LSE plans, there is less flexibility to displace solar and batteries, especially in 2035
 - There is also less flexibility to displace 4-hr batteries and more 8-hr batteries are displaced
- An additional ~1 GW gas is not retained in 2045

Conclusions

- When forced-in, 5.5 GW LLT resources displace ~12-13 GW of other lower capacity factor resources by 2040, primarily solar and storage and some instate wind
- When given the option to build forced-in 2035 amounts of geothermal and long duration storage earlier, RESOLVE starts building these resources in 2032
 These LLT resources can displace more solar and storage when built earlier
- When LLT resources and full LSE plans are forced-in, the system ends up overreliable and RESOLVE has less flexibility for LLTs to displace solar and storage in 2035

 This leaves onshore wind as the main resource that can be displaced with full LSE plans forced-in

- In 2045, LLT sensitivities have 1 GW less gas retained than in the 25-26 TPP case
- Forcing-in additional LLT resources increases total (net present value) costs by ~\$3-5 Billion
- Staff recommend LLT (2030 LSE Plans) which only forces in the LSE planned resources through 2030 – for the 25-26 TPP LLT Sensitivity Portfolio

Sensitivity Portfolio Results: Alternate – LLT (2035 LSE Plans)

Alternate – LLT (2035 LSE Plans) vs. 25-26 TPP Proposed Base Case

Comparison of Planned & Selected Capacity (GW)

- The additional 5.5 GW of LLT resources added in 2035 displaces ~12 GW of other resource builds by 2040
- Compared to the 25-26 TPP, starting in 2035, about ~1 GW less solar and battery is built annually when additional, highcapacity factor LLT resources are added to the system
- 2 GW out-of-state wind is delayed from 2035 to 2040
- By 2040, the LLT case has **similar amounts** of onshore wind (<1 GW differences)
- All gas is retained until 2045. In 2045, gas not retained totals 3.5 GW in the 25-26 TPP and 4.5 GW in the LLT case
- Forcing-in additional LLT resources increases total NPV costs by ~\$5 Billion

<u>NPV</u> of optimized costs* (\$MM in 2022 Dollar Year, 2024-2065)										
LLT (2035 LSE Plans)	\$233,575 (+\$4,898 MM or +2.3%)									
25-26 TPP Proposed Base Case	\$228,677									

RESOLVE Builds Betwen TPP Proposed Base Case and Alternate Portfolio

<u>Annual</u> Optimized Costs (\$MM)	2035	2040	2045
LLT (2035 LSE Plans)	15,650 (+\$886M)	18,616 (+\$479M)	20,396 (+\$554M)
25-26 TPP Proposed Base Case	14,764	18,137	19,842

Alternate – LLT (2035 LSE Plans)

Planned & Selected Capacity (GW) – Incremental to 25-26 TPP Proposed Base Case

Forced-in LLTs	Addition Hydro is	Additional Geothermal and Pumped Significant amoun Hydro is gradually built over 2032-35 storage displace								
Resource Category	2026	2028	2030	2032	2034	2035	2039	2040	2045	
Natural Gas	-	-	-	-	-	-	-	-	-	
Geothermal	-	-	-	0.1	0.3	0.5	0.5	0.5	0.5	
Biomass	-	-	-	-	-	-	-	-	-	
In-State Wind	-	-	(0.3)	(0.1)	(0.1)	(1.0)	(0.7)	(0.7)	(0.7)	
Out-of-State Wind	-	-	0.2	0.2	-	(2.0)	(0.1)	(0.3)	-	
Offshore Wind	-	-	-	-	(0.0)	3.0	3.0	3.0	3.0	
Solar	-	-	-	(0.9)	(0.8)	(0.8)	(6.5)	(6.3)	(5.3)	
Li-ion Battery (4-hr)	-	-	-	-	-	-	-	-	-	
Li-ion Battery (8-hr)	-	-	-	-	(0.2)	-	(4.3)	(4.2)	(4.7)	
Pumped Hydro Storage (12-hr)	-	-	-	0.0	0.1	1.0	1.0	1.0	1.0	
A-CAES (24-hr)	-	-	-	-	-	0.7	0.7	0.7	0.7	
Flow Battery (8-hr)	-	-	-	-	(0.1)	-	-	-	-	
Shed DR	-	-	-	-	-	-	-	-	-	
Gas Capacity Not Retained*	-	-	-	-	-	-	-	-	_/ (1.0)	
Total	-	-	(0.1)	(0.8)	(0.9)	1.4	(6.3)	(6.2)	(6.4)	

California Public Utilities Commission

With full LSE plans, onshore wind is the main resource that can be displaced in 2035

Additional gas not retained in 2045 42

*Positive Value = More Gas Retained

Sensitivity Portfolio Results: Recommended – LLT (2030 LSE Plans)

Recommended – LLT (2030 LSE Plans) vs. 25-26 TPP Proposed Base Case

Comparison of Planned & Selected Capacity (GW)

- The additional 5.5 GW of LLT resources added in 2035 displaces ~13 GW of other resource builds by 2040
- Compared to the 25-26 TPP, starting in 2035, about ~1 GW less solar and battery is built annually when additional, highcapacity factor LLT resources are added to the system
- 2 GW out-of-state wind is delayed from 2035 to 2040
- By 2040, the LLT case has **similar amounts** of onshore wind (<1 GW differences)
- All gas is retained until 2045. In 2045, gas not retained totals 3.5 GW in the 25-26 TPP and ~4.4 GW in the LLT case
- Forcing-in additional LLT resources increases total NPV costs by ~\$3 Billion

<u>NPV</u> of optimized costs* (\$MM in 2022 Dollar Year, 2024-2065)									
LLT (2030 LSE Plans)	\$231,930 (+ \$3,253 MM or +1.4%)								
25-26 TPP Proposed Base Case	\$228,677								

RESOLVE Builds Betwen TPP Proposed Base Case and Recommended TPP Sensitivity Portfolio

<u>Annual</u> Optimized Costs (\$MM)	2035	2040	2045
LLT (2030 LSE Plans)	15,232 (+\$468M)	18,449 (+\$312M)	20,232 (+\$390M)
25-26 TPP Proposed Base Case	14,764	18,137	19,842

Recommended – LLT (2030 LSE Plans)

Planned & Selected Capacity (GW) – Incremental to 25-26 TPP Proposed Base Case

Forced-in LLTs	Additional Ge gradually built (othermal, A-CA over 2032-35 (no	NES, and Pumpe ot allowed for (ed Hydro are Offshore Wind)		significant amounts of solar and storage displaced after 2035				
Resource Category	2026	2028	2030	2032	2034	2035	2039	2040	2045	
Natural Gas	-	-	+	-	-	-	-	-	-	
Geothermal	-	-	-	0.1	0.5	0.5	0.5	0.5	0.5	
Biomass	-	-	-	-	-	-	-	-	-	
In-State Wind	-	-	0.0	(0.1)	(0.1)	(1.0)	(0.7)	(0.7)	(0.7)	
Out-of-State Wind	-	-	(0.0)	(0.0)	-	(2.0)	(0.1)	(0.2)	-	
Offshore Wind	-	-	-	-	(0.0)	3.0	3.0	3.0	3.0	
Solar	-	-	- \	(0.5)	(2.2)	(2.2)	(6.6)	(6.5)	(4.6)	
Li-ion Battery (4-hr)	-	-	-	(1.1)	(3.4)	(4.1)	(4.1)	(4.1)	(4.1)	
Li-ion Battery (8-hr)	-	-	-	(0.1)	0.2 /	(0.7)	(1.9)	(1.8)	(2.4)	
Pumped Hydro Storage (12-hr)	-	-	-	0.8	1.0	1.0	1.0	1.0	1.0	
A-CAES (24-hr)	-	-	-	-	0.3	0.7	0.7	0.7	0.7	
Flow Battery (8-hr)	-	-	-	(0.1)	(0.2)	(0.2)	(0.2)	(0.2)	(0.2)	
Shed DR	-	-	-	-	- /	-	-	-	-	
Gas Capacity Not Retained*	-	-	-	-	- /	-	-	-	/ (0.9)	
Total	-	-	0.0	(1.0)	(3.8)	(4.9)	(8.3)	(8.2)	(7.6)	

With LSE Plans only forced-in up to 2030, a mix of onshore wind, solar, and storage is displaced in 2035. RESOLVE begins selecting 8-hr batteries in lieu of 4-hr starting in 2034.

California Public Utilities Commission

*Positive Value = More Gas Retained

Additional gas not retained in 2045 45

Appendices

Appendix I: Input Updates Across Recent TPP cycles

Scope of Input Updates across TPP cycles

23-24 TPP

- Resource costs •
- Load inputs (2021 IEPR ATE) ٠
- Modeling resource Baseline ٠
- Updated NQC values ٠
- Transmission deliverabilityresource mappings, existing transmission deliverability capacity, and transmission upgrade costs from CAISO 21-22 TPP and CAISO 20-year Study • Resource-transmission
- Secondary system need (SSN) • transmission utilization values. per CAISO

24-25 TPP

- Modeling resource Baseline
- Resource cost (2023 NREL)
- Load inputs
- Resource potential PRM accounting & resource accreditation
- Sampling from SERVM's 23weather year dataset for loads and generation profiles
- representation & deliverability upgrades based on CAISO data
- Resource builds in non-CAISO external zones
- Modeling and data updates for modeling load shift resources
- Emerging technologies as candidate resources

25-26 TPP (all cases)

- New Transmission Cluster Constraints
- Load Inputs (2023 IEPR)
- Geothermal Resource Cost •

Appendix II: Additional RESOLVE modeling results

25-26 TPP Proposed Base Case Planned & Selected Capacity (GW)

Resource Category	2026	2028	2030	2032	2034	2035	2039	2040	2045
Natural Gas	-	-	-	-	-	-	-	-	-
Geothermal	0.8	1.1	1.5	1.6	1.6	1.6	1.6	1.6	1.6
Biomass	-	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
In-State Wind	0.7	1.0	5.2	7.0	7.0	7.9	7.9	7.9	9.0
Out-of-State Wind	1.8	3.4	4.7	4.7	7.0	9.0	9.1	10.7	15.7
Offshore Wind	-	-	-	2.7	3.9	4.5	4.5	4.5	4.5
Solar	5.5	8.5	14.8	16.3	19.8	19.8	42.6	44.9	61.8
Li-ion Battery (4-hr)	8.0	9.0	11.6	12.7	15.0	15.7	15.7	15.7	15.7
Li-ion Battery (8-hr)	0.4	1.0	1.2	1.4	1.9	2.8	11.2	12.0	21.1
Pumped Hydro Storage (12-hr)	-	0.5	0.5	0.8	0.8	0.8	0.8	0.8	0.8
A-CAES (24-hr)	-	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Flow Battery (8-hr)	0.1	0.1	0.1	0.2	0.3	0.3	0.3	0.3	0.3
Shed DR	-	-	-	-	-	-	-	-	-
Gas Capacity Not Retained	-	-	-	-	-	-	-	-	(3.5)
Total	17.3	25.1	40.0	47.7	57.7	62.9	94.1	98.8	127.4

25-26 TPP Proposed Base Case LSE Planned Builds (GW)

Resource Category	2026	2028	2030	2032	2034	2035	2039	2040	2045
Natural Gas	-	-	-	-	-	-	-	-	-
Geothermal	0.8	1.1	1.5	1.6	1.6	1.6	1.6	1.6	1.6
Biomass	-	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
In-State Wind	0.7	1.0	2.8	2.8	2.8	3.1	3.1	3.1	3.1
Out-of-State Wind	1.8	3.4	4.1	4.1	4.3	4.6	4.6	4.6	4.6
Offshore Wind	-	-	-	2.7	3.9	4.5	4.5	4.5	4.5
Solar	5.5	8.5	14.8	15.3	16.4	19.0	19.0	19.0	19.0
Li-ion Battery (4-hr)	8.0	9.0	11.6	12.7	15.0	15.7	15.7	15.7	15.7
Li-ion Battery (8-hr)	0.4	1.0	1.2	1.4	1.7	2.8	2.8	2.8	2.8
Pumped Hydro Storage (12- hr)	-	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Long Duration Storage (8-24 hr)	0.1	0.3	0.3	0.4	0.5	0.5	0.5	0.5	0.5
Shed DR	-	-	-	-	-	-	-	-	-
Gas Capacity Not Retained	-	-	-	-	-	-	-	-	-
Total	17.3	25.1	37.0	41.6	46.8	52.5	52.5	52.5	52.5

California Public Utilities Commission

Note: A portion of LSE Planned wind is generic (not specified as in-state or out-of-state) and can be sited optimally by RESOLVE. For the purposes of this table, 51 any generic wind in the LSE plans is allocated based on the share of RESOLVE-selected wind in 2035 (approximately 50% each in-state and out-of-state).

RESOLVE-Selected Builds (GW)

Resource Category	2026	2028	2030	2032	2034	2035	2039	2040	2045
Natural Gas	-	-	-	-	-	-	-	-	-
Geothermal	-	-	-	0.0	0.0	-	-	-	-
Biomass	-	-	-	-	-	-	-	-	-
In-State Wind	-	-	2.4	4.2	4.2	4.8	4.8	4.8	5.9
Out-of-State Wind	-	-	0.6	0.6	2.7	4.4	4.5	6.1	11.2
Offshore Wind	-	-	-	-	0.0	-	-	-	-
Solar	-	-	-	1.0	3.4	0.8	23.6	25.9	42.8
Li-ion Battery (4-hr)	-	-	-	-	-	-	-	-	-
Li-ion Battery (8-hr)	-	-	-	-	0.2	-	8.3	9.2	18.3
Pumped Hydro Storage (12- hr)	-	-	-	0.3	0.3	0.3	0.3	0.3	0.3
Long Duration Storage (8-24 hr)	-	-	-	-	0.1	-	-	-	-
Shed DR	-	-	-	-	-	-	-	-	-
Gas Capacity Not Retained	-	-	-	-	-	-	-	-	(3.5)
Total	-	-	2.8	6.0	10.7	9.8	41.4	46.2	77.3

25-26 TPP Proposed Base Case comparison to 24-25 TPP Base Case **PRM and GHG Shadow Prices Comparison**

PRM Shadow Prices

GHG Shadow Prices

(\$/ton)

Alternate – LLT (2035 LSE Plans) Planned & Selected Capacity (GW)

Resource Category	2026	2028	2030	2032	2034	2035	2039	2040	2045
Natural Gas	-	-	-	-	-	-	-	-	-
Geothermal	0.8	1.1	1.5	1.7	1.9	2.1	2.1	2.1	2.1
Biomass	-	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
In-State Wind	0.7	1.0	4.9	6.9	6.9	6.9	7.2	7.2	8.3
Out-of-State Wind	1.8	3.4	4.9	4.9	7.0	7.0	9.0	10.4	15.7
Offshore Wind	-	-	-	2.7	3.9	7.6	7.6	7.6	7.6
Solar	5.5	8.5	14.8	15.4	19.0	19.0	36.1	38.6	56.5
Li-ion Battery (4-hr)	8.0	9.0	11.6	12.7	15.0	15.7	15.7	15.7	15.7
Li-ion Battery (8-hr)	0.4	1.0	1.2	1.4	1.7	2.8	6.9	7.8	16.4
Pumped Hydro Storage (12-hr)	-	0.5	0.5	0.8	0.9	1.8	1.8	1.8	1.8
A-CAES (24-hr)	-	0.2	0.2	0.2	0.2	0.9	0.9	0.9	0.9
Flow Battery (8-hr)	0.1	0.1	0.1	0.2	0.3	0.3	0.3	0.3	0.3
Shed DR	-	-	-	-	-	-	-	-	-
Gas Capacity Not Retained	-	-	-	-	-	-	-	-	(4.5)
Total	17.3	25.1	39.9	46.9	56.8	64.2	87.8	92.6	121.0

Alternate – LLT (2035 LSE Plans) PRM and GHG Constraints

Recommended – LLT (2030 LSE Plans) Planned & Selected Capacity (GW)

Resource Category	2026	2028	2030	2032	2034	2035	2039	2040	2045
Natural Gas	-	-	-	-	-	-	-	-	-
Geothermal	0.8	1.1	1.5	1.7	2.1	2.1	2.1	2.1	2.1
Biomass	-	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
In-State Wind	0.7	1.0	5.2	6.9	6.9	6.9	7.2	7.2	8.3
Out-of-State Wind	1.8	3.4	4.7	4.7	7.0	7.0	9.0	10.5	15.7
Offshore Wind	-	-	-	2.7	3.9	7.6	7.6	7.6	7.6
Solar	5.5	8.5	14.8	15.8	17.7	17.7	36.0	38.4	57.3
Li-ion Battery (4-hr)	8.0	9.0	11.6	11.6	11.6	11.6	11.6	11.6	11.6
Li-ion Battery (8-hr)	0.4	1.0	1.2	1.2	2.1	2.1	9.3	10.2	18.7
Pumped Hydro Storage (12-hr)	-	0.5	0.5	1.5	1.8	1.8	1.8	1.8	1.8
A-CAES (24-hr)	-	0.2	0.2	0.2	0.5	0.9	0.9	0.9	0.9
Flow Battery (8-hr)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Shed DR	-	-	-	-	-	-	-	-	-
Gas Capacity Not Retained	-	-	-	-	-	-	-	-	(4.4)
Total	17.3	25.1	40.0	46.7	53.9	58.0	85.7	90.6	119.8

Recommended – LLT (2030 LSE Plans) **PRM and GHG Constraints**

24-25 TPP Base Case Planned & Selected Capacity (GW)

Resource Category	2026	2028	2030	2032	2034	2035	2039	2040	2045
Natural Gas	-	-	-	-	-	-	-	-	-
Geothermal	0.8	1.1	1.5	1.8	2.0	2.0	2.0	2.0	2.0
Biomass	-	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
In-State Wind	0.8	1.1	5.9	7.0	7.0	7.9	7.9	7.9	9.2
Out-of-State Wind	1.7	3.4	4.5	4.5	5.3	6.3	8.3	8.3	12.0
Offshore Wind	-	-	-	2.7	3.9	4.5	4.5	4.5	4.5
Solar	6.9	9.9	14.8	15.7	19.0	19.0	30.7	35.0	57.5
Li-ion Battery (4-hr)	8.0	9.0	11.6	12.7	15.0	15.7	15.7	15.7	15.7
Li-ion Battery (8-hr)	0.4	1.0	1.2	1.4	1.7	2.8	7.2	9.0	19.5
Pumped Hydro Storage (12-hr)	-	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Long Duration Storage (8-24 hr)*	0.1	0.3	0.3	0.4	0.5	0.5	0.5	0.5	0.5
Shed DR	-	-	-	-	-	-	-	-	-
Gas Capacity Not Retained	(2.7)	(2.7)	(2.7)	(2.7)	(2.7)	(2.7)	(2.7)	(2.7)	(6.6)
Total	16.0	23.8	37.9	44.2	52.3	56.8	74.8	81.0	115.0

Appendix III: Transmission Information for TPP analyses

Resource Level Summary: Delta from 24-25 TPP Base Case (2040)

Solar & Wind Resources Likely to serve energy

Resource	Year	25-26 TPP	24-25 TPP	Delta
Riverside_Solar	2040	8,688	2,868	5,820
Greater_Imperial_Solar	2040	5,171	39	5,132
Southern_NV_Eldorado_Solar	2040	12,576	7,702	4,874
New_Mexico_Wind	2040	6,000	2,028	3,972
Southern_PGAE_Solar	2040	2,854	1,226	1,628
Humboldt_Bay_Offshore_Wind	2040	1,607	-	1,607
Greater_LA_Solar	2040	375	-	375
Northern_California_Wind	2040	2,288	2,259	30
Solano_Wind	2040	405	375	30
Central_Valley_North_Los_Banos_Wind	2040	153	241	(88)
Greater_Kramer_Solar	2040	4,052	4,438	(386)
Wyoming_Wind	2040	4,407	6,000	(1,593)
Morro_Bay_Offshore_Wind	2040	2,924	4,531	(1,607)
Arizona_Solar	2040	4,117	7,811	(3,694)
Tehachapi_Solar	2040	6,934	10,796	(3,862)

Storage, Geothermal, & Gas Resources Likely to serve capacity

Resource	Year	25-26 TPP	24-25 TPP	Delta
CAISO_Li_Battery_8hr_Dispatch	2040	12,011	9,036	2,975
CAISO_New_Pumped_Storage_12hr	2040	756	477	279
Pacific_Northwest_Geothermal	2040	60	33	27
Greater_Imperial_Geothermal	2040	1,217	1,345	(127)
Northern_California_Geothermal	2040	314	544	(230)

- The updated transmission constraints caused a shift in location for solar, wind, and geothermal resources
 - Shift in wind buildout from Wyoming to New Mexico
 - Shift in solar from Tehachapi and Arizona to Southern NV, Riverside, Greater Imperial, and Greater LA
 - Shift in geothermal from Northern CA and Greater
 Imperial to Pacific Northwest
- Offshore wind shift from Morro Bay to Humboldt reflects the locational change applied to the resource portfolio transmitted to CAISO not reflected in E3's 24-25 TPP results

Shifts from Largest 24-25 TPP Base Case Clusters, 2040

Cluster	24-25 TPP Builds	25-26 TPP IX Limit	25-26 TPP Builds	Notable Resources
19	6,300	3,000	4,707*	WY, ID, UT Wind Southern Nevada Solar + Storage
48	5,882	200	54	Arizona Solar + Storage
66	5,780	3,000	3,000	Tehachapi Solar + Storage
4	4,950	33,000	6,021	Greater LA Storage
15	4,604	2,100	2,100	Southern Nevada Solar + Storage Southern Nevada Wind (60 MW)
13	4,393	3,000	3,000	Tehachapi Solar Tehachapi Wind (1,200 MW)
32	4,320	3,000	3,000	Tehachapi Solar Tehachapi Wind (250 MW)
9	3,562	16,500	7,376	Riverside Solar + Storage
16	3,368	400	400	Southern Nevada Solar + Storage Southern Nevada Wind (300 MW)

 Top build clusters (capacity additions > 3 GW) from the 24-25 TPP

• Resource builds are moving <u>out of</u> these regions due to interconnection limits:

- Wyoming Wind
- Tehachapi Solar/Storage
- Arizona Solar/Storage

* 1.4 GW of Wyoming Wind is built that triggers non-CAISO "generic" transmission and interconnection upgrades in SCE Eastern

Shifts to Largest 25-26 TPP Proposed Base Case Clusters, 2040

Cluster	24-25 TPP Builds	25-26 TPP IX Limit	25-26 TPP Builds	Notable Resources
2	2,940	18,000	13,086	Southern Nevada Solar + Storage Southern Nevada Wind (300 MW)
9	3,562	16,500	7,376	Riverside Solar + Storage
4	4,950	33,000	6,021	Greater LA Storage
55	2,028	6,000	6,000	New Mexico Wind
19	6,300	3,000	4,707*	WY, ID, UT Wind Southern Nevada Solar + Storage
13	4,393	3,000	3,000	Tehachapi Solar Tehachapi Wind (1,200 MW)
32	4,320	3,000	3,000	Tehachapi Solar Tehachapi Wind (250 MW)
66	5,780	3,000	3,000	Tehachapi Solar + Storage
62	0	3,000	1,987	Arizona Solar + Storage

- Top build clusters (capacity additions > 3 GW) from the 25-26 TPP
- Resource builds are moving <u>into</u> these regions due to interconnection availability:
 - Greater LA Storage
 - Riverside Solar/Storage
 - Southern Nevada Solar/Storage
 - New Mexico Wind

* 1.4 GW of Wyoming Wind is built that triggers non-CAISO "generic" transmission and interconnection upgrades in SCE Eastern

RESOLVE-Selected Transmission Upgrades, Base Case

California Public Utilities Commission

Resource FCDS and EODS, 2035

Solar and Wind Resources	FCDS	EODS	Total
Arizona_Solar	3,707	-	3,707
Baja_California_Wind	900	1,573	2,473
Cape_Mendocino_Offshore_Wind	-	-	-
Central_Valley_North_Los_Banos_Wind	-	153	153
Del_Norte_Offshore_Wind	-	-	-
Greater_Imperial_Solar	39	-	39
Greater_Imperial_Wind	133	-	133
Greater_Kramer_Solar	1,012	-	1,012
Greater_LA_Solar	-	-	-
Humboldt_Bay_Offshore_Wind	1,607	-	1,607
Idaho_Wind	300	-	300
Morro_Bay_Offshore_Wind	2,924	-	2,924
New_Mexico_Wind	6,000	-	6,000
Northern_California_Solar	26	100	126
Northern_California_Wind	334	1,954	2,288
Riverside_Solar	659	-	659
Solano_Wind	220	185	405
Southern_NV_Eldorado_Solar	9,111	330	9,441
Southern_NV_Eldorado_Wind	711	(0)	711
Southern_PGAE_Solar	247	-	247
Tehachapi_Solar	4,602	0	4,602
Tehachapi_Wind	1,732	-	1,732
Utah_Wind	-	-	-
Wyoming Wind	2,700	-	2,700

Capacity Resources	FCDS	EODS	Total
CAISO_Adiabatic_CAES_24hr	200	-	200
CAISO_Flow_Battery_8hr_Dispatch	308	-	308
CAISO_Li_Battery_4hr_Dispatch	15,707	0	15,707
CAISO_Li_Battery_8hr_Dispatch	2,834	-	2,834
CAISO_New_Pumped_Storage_12hr	756	-	756
Central_Nevada_Geothermal	40	-	40
Greater_Imperial_Geothermal	1,217	-	1,217
InState_Biomass	-	171	171
Inyokern_North_Kramer_Geothermal	7	-	7
Northern_California_Geothermal	314	-	314
Northern_Nevada_Geothermal	-	-	-
Pacific_Northwest_Geothermal	60	-	60
Utah_Geothermal	-	-	-

Resource FCDS and EODS, 2040

Solar and Wind Resources	FCDS	EODS	Total
Arizona_Solar	4,117	-	4,117
Baja_California_Wind	900	1,573	2,473
Cape_Mendocino_Offshore_Wind	-	-	-
Central_Valley_North_Los_Banos_Wind	-	153	153
Del_Norte_Offshore_Wind	-	-	-
Greater_Imperial_Solar	5,171	-	5,171
Greater_Imperial_Wind	133	-	133
Greater_Kramer_Solar	4,052	-	4,052
Greater_LA_Solar	375	-	375
Humboldt_Bay_Offshore_Wind	1,607	-	1,607
Idaho_Wind	300	-	300
Morro_Bay_Offshore_Wind	2,924	-	2,924
New_Mexico_Wind	6,000	-	6,000
Northern_California_Solar	26	100	126
Northern_California_Wind	334	1,954	2,288
Riverside_Solar	8,688	-	8,688
Solano_Wind	220	185	405
Southern_NV_Eldorado_Solar	12,246	330	12,576
Southern_NV_Eldorado_Wind	711	(0)	711
Southern_PGAE_Solar	2,854	-	2,854
Tehachapi_Solar	6,934	0	6,934
Tehachapi_Wind	1,732	-	1,732
Utah_Wind	-	-	-
Wyoming_Wind	4,407	-	4,407

Capacity Resources	FCDS	EODS	Total
CAISO_Adiabatic_CAES_24hr	200	-	200
CAISO_Flow_Battery_8hr_Dispatch	308	-	308
CAISO_Li_Battery_4hr_Dispatch	15,707	0	15,707
CAISO_Li_Battery_8hr_Dispatch	12,011	-	12,011
CAISO_New_Pumped_Storage_12hr	756	-	756
Central_Nevada_Geothermal	40	-	40
Greater_Imperial_Geothermal	1,217	-	1,217
InState_Biomass	-	171	171
Inyokern_North_Kramer_Geothermal	7	-	7
Northern_California_Geothermal	314	-	314
Northern_Nevada_Geothermal	-	-	-
Pacific_Northwest_Geothermal	60	-	60
Utah_Geothermal	-	-	-

Alternate – LLT (2035 LSE Plans)

Resource Level Summary: Incremental to 25-26 TPP Proposed Base Case (2035)

Solar & Wind Resources Likely to serve energy

Resource	Year	Alternate – LLT (2035 LSE Plans)	25-26 TPP	Delta
Morro_Bay_Offshore_Wind	2035	4,875	2,924	1,951
Humboldt_Bay_Offshore_Wind	2035	2,680	1,607	1,073
Southern_NV_Eldorado_Solar	2035	9,513	9,441	72
Arizona_Solar	2035	3,746	3,707	39
Solano_Wind	2035	392	405	(12)
Central_Valley_North_Los_Banos_Wind	2035	32	153	(121)
Baja_California_Wind	2035	1,573	2,473	(900)
Tehachapi_Solar	2035	3,646	4,602	(956)
New_Mexico_Wind	2035	4,000	6,000	(2,000)

- Forced-in geothermal and pumped hydro builds are spread between multiple locations
 - Forced-in offshore wind fills the full potential of Morro Bay & Humboldt Bay; full A-CAES potential built
- LLT resources primarily displace New Mexico and Baja California wind
- Solar is displaced in Tehachapi
- Battery builds shift from several Southern CA locations to Greater LA and Northern California, making room for forced-in geothermal and long duration storage
 California Public Utilities Commission

Storage, Geothermal, & Gas Resources Likely to serve capacity

Resource	Year	Alternate – LLT (2035 LSE Plans)	25-26 TPP	Delta
Riverside_East_Pumped_Storage	2035	1,155	477	678
Northern_California_Li_Battery_8hr	2035	1,869	1,191	678
Greater_LA_Li_Battery_4hr	2035	2,707	2,078	629
Southern_PGAE_Adiabatic_CAES	2035	400	-	400
Greater_Imperial_Geothermal	2035	1,609	1,217	392
Greater_LA_Li_Battery_8hr	2035	318	-	318
Tehachapi_Adiabatic_CAES	2035	500	200	300
Riverside_West_Pumped_Storage	2035	500	279	221
Southern_PGAE_Flow_Battery	2035	158	-	158
Greater_Kramer_Li_Battery_4hr	2035	797	664	133
Northern_California_Li_Battery_4hr	2035	3,874	3,751	123
Northern_California_Pumped_Storage	2035	122	-	122
Pacific_Northwest_Geothermal	2035	169	60	108
Arizona_Li_Battery_4hr	2035	978	870	108
Greater_LA_Flow_Battery	2035	50	-	50
Southern_NV_Eldorado_Li_Battery_8hr	2035	44	-	44
Greater_Imperial_Li_Battery_8hr	2035	21	-	21
Southern_NV_Eldorado_Li_Battery_4hr	2035	3,550	3,602	(52)
Greater_Imperial_Li_Battery_4hr	2035	438	571	(132)
Riverside_Li_Battery_4hr	2035	358	520	(161)
Northern_California_Flow_Battery	2035	100	308	(208)
Riverside_Li_Battery_8hr	2035	120	485	(365)
Southern_PGAE_Li_Battery_4hr	2035	1,749	2,395	(646)
Southern_PGAE_Li_Battery_8hr	2035	362	1,058	(696)

Alternate – LLT (2035 LSE Plans)

Resource Level Summary: Incremental to 25-26 TPP Proposed Base (2045)

Solar & Wind Resources Likely to serve energy

Resource	Year	Alternate – LLT (2035 LSE Plans)	25-26 TPP	Delta
Morro_Bay_Offshore_Wind	2045	4,875	2,924	1,951
Humboldt_Bay_Offshore_Wind	2045	2,680	1,607	1,073
Arizona_Solar	2045	5,222	4,317	905
Solano_Wind	2045	392	405	(12)
Central_Valley_North_Los_Banos_Wind	2045	32	153	(121)
Northern_California_Solar	2045	126	366	(240)
Greater_Kramer_Solar	2045	4,438	4,867	(429)
Baja_California_Wind	2045	1,922	2,473	(551)
Tehachapi_Solar	2045	7,022	7,780	(759)
Greater_Imperial_Solar	2045	4,881	6,278	(1,397)
Southern_NV_Eldorado_Solar	2045	16,954	18,610	(1,657)
Southern_PGAE_Solar	2045	6,006	7,725	(1,719)

- LLT resources displace >1 GW of solar and batteries at Greater LA, Southern PG&E, Southern Nevada – El Dorado, and Greater Imperial
- Baja California wind continues to be displaced, by not New Mexico Wind
- Battery builds are displaced or shift to Northern CA by 2045

Storage, Geothermal, & Gas Resources Likely to serve capacity

Resource	Year	Alternate – LLT (2035 LSE Plans)	25-26 TPP	Delta
Northern_California_Li_Battery_8hr	2045	3,288	2,123	1,165
Riverside_East_Pumped_Storage	2045	1,155	477	678
Greater_LA_Li_Battery_4hr	2045	2,707	2,078	629
Southern_PGAE_Adiabatic_CAES	2045	400	-	400
Greater_Imperial_Geothermal	2045	1,609	1,217	392
Tehachapi_Adiabatic_CAES	2045	500	200	300
Riverside_West_Pumped_Storage	2045	500	279	221
Southern_PGAE_Flow_Battery	2045	158	-	158
Greater_Kramer_Li_Battery_4hr	2045	797	664	133
Northern_California_Li_Battery_4hr	2045	3,874	3,751	123
Northern_California_Pumped_Storage	2045	122	-	122
Riverside_Li_Battery_8hr	2045	594	485	109
Pacific_Northwest_Geothermal	2045	169	60	108
Arizona_Li_Battery_4hr	2045	978	870	108
Greater_LA_Flow_Battery	2045	50	-	50
Southern_NV_Eldorado_Li_Battery_4hr	2045	3,550	3,602	(52)
Greater_Imperial_Li_Battery_8hr	2045	518	637	(119)
Greater_Imperial_Li_Battery_4hr	2045	438	571	(132)
Riverside_Li_Battery_4hr	2045	358	520	(161)
Northern_California_Flow_Battery	2045	100	308	(208)
Greater_Kramer_Li_Battery_8hr	2045	100	563	(463)
Southern_NV_Eldorado_Li_Battery_8hr	2045	2,917	3,504	(587)
Southern_PGAE_Li_Battery_4hr	2045	1,749	2,395	(646)
Southern_PGAE_Li_Battery_8hr	2045	2,818	3,871	(1,053)
Greater_LA_Li_Battery_8hr	2045	6,181	9,916	(3,735)

Alternate – LLT (2035 LSE Plans) RESOLVE-Selected Transmission Upgrades

California Public Utilities Commission

Recommended – LLT (2030 LSE Plans)

Resource Level Summary: Incremental to 25-26 TPP Proposed Base Case (2035)

Solar & Wind Resources Likely to serve energy

Resource	Year	Recommended – LLT (2030 LSE Plans)	25-26 TPP	Delta
Morro_Bay_Offshore_Wind	2035	4,875	2,924	1,951
Humboldt_Bay_Offshore_Wind	2035	2,680	1,607	1,073
Southern_NV_Eldorado_Solar	2035	9,508	9,441	67
Solano_Wind	2035	454	405	49
Northern_California_Solar	2035	121	126	(5)
Central_Valley_North_Los_Banos_Wind	2035	32	153	(121)
Tehachapi_Solar	2035	4,027	4,602	(575)
Baja_California_Wind	2035	1,573	2,473	(900)
Arizona_Solar	2035	2,064	3,707	(1,643)
New_Mexico_Wind	2035	4,000	6,000	(2,000)

- Forced-in geothermal and pumped hydro builds are spread between multiple locations
 - Forced-in offshore wind fills the full potential of Morro Bay & Humboldt Bay; full A-CAES potential built
- LLT resources primarily displace New Mexico and Baja California wind; Solar is displaced in both Arizona and Tehachapi
- Battery builds are shifted to differ from the 2035 Full LSE Plans case, with builds either displaced or shifting to both Greater LA and Arizona

Storage, Geothermal, & Gas Resources Likely to serve capacity

Resource	Year	Recommended – LLT (2030 LSE Plans)	25-26 TPP	Delta
Arizona_Li_Battery_8hr	2035	906	-	906
Riverside_East_Pumped_Storage	2035	1,277	477	800
Greater_Imperial_Geothermal	2035	1,717	1,217	500
Southern_PGAE_Adiabatic_CAES	2035	400	-	400
Greater_LA_Li_Battery_8hr	2035	333	-	333
Tehachapi_Adiabatic_CAES	2035	500	200	300
Riverside_West_Pumped_Storage	2035	500	279	221
Greater_Kramer_Li_Battery_8hr	2035	231	100	131
Southern_PGAE_Flow_Battery	2035	54	-	54
Greater_Imperial_Li_Battery_8hr	2035	21	-	21
Greater_Kramer_Li_Battery_4hr	2035	665	664	1
Southern_NV_Eldorado_Li_Battery_4hr	2035	3,591	3,602	(11)
Riverside_Li_Battery_4hr	2035	445	520	(75)
Southern_PGAE_Li_Battery_4hr	2035	2,233	2,395	(162)
Northern_California_Flow_Battery	2035	54	308	(254)
Riverside_Li_Battery_8hr	2035	-	485	(485)
Northern_California_Li_Battery_8hr	2035	645	1,191	(546)
Greater_Imperial_Li_Battery_4hr	2035	-	571	(571)
Arizona_Li_Battery_4hr	2035	-	870	(870)
Greater_LA_Li_Battery_4hr	2035	1,193	2,078	(885)
Southern_PGAE_Li_Battery_8hr	2035	-	1,058	(1,058)
Northern_California_Li_Battery_4hr	2035	2,198	3,751	(1,553)

Recommended – LLT (2030 LSE Plans)

Resource Level Summary: Incremental to 25-26 TPP Proposed Base Case (2045)

Solar & Wind Resources Likely to serve energy

Resource	Year	Recommended – LLT (2030 LSE Plans)	25-26 TPP	Delta
Morro_Bay_Offshore_Wind	2045	4,875	2,924	1,951
Humboldt_Bay_Offshore_Wind	2045	2,680	1,607	1,073
Arizona_Solar	2045	5,265	4,317	948
Solano_Wind	2045	454	405	49
Central_Valley_North_Los_Banos_Wind	2045	32	153	(121)
Northern_California_Solar	2045	121	366	(245)
Greater_Kramer_Solar	2045	4,438	4,867	(429)
Baja_California_Wind	2045	1,889	2,473	(584)
Tehachapi_Solar	2045	7,093	7,780	(688)
Southern_NV_Eldorado_Solar	2045	17,560	18,610	(1,050)
Southern_PGAE_Solar	2045	6,281	7,725	(1,443)
Greater_Imperial_Solar	2045	4,632	6,278	(1,646)

- LLT resources displace >1 GW of solar and batteries at Northern California, Southern PG&E, Southern Nevada – El Dorado, and Greater Imperial
- Baja California wind continues to be displaced, by not New Mexico Wind
- Similar to the 2035 Full LSE Plans case, battery builds are displaced or shift to Northern CA by 2045

Storage, Geothermal, & Gas Resources Likely to serve capacity

Resource	Year	Recommended – LLT (2030 LSE Plans)	25-26 TPP	Delta
Arizona_Li_Battery_8hr	2045	935	-	935
Riverside_East_Pumped_Storage	2045	1,277	477	800
Greater_Imperial_Geothermal	2045	1,717	1,217	500
Southern_PGAE_Adiabatic_CAES	2045	400	-	400
Greater_LA_Li_Battery_8hr	2045	10,316	9,916	400
Greater_Imperial_Li_Battery_8hr	2045	948	637	311
Tehachapi_Adiabatic_CAES	2045	500	200	300
Riverside_West_Pumped_Storage	2045	500	279	221
Southern_PGAE_Flow_Battery	2045	54	-	54
Greater_Kramer_Li_Battery_4hr	2045	665	664	1
Southern_NV_Eldorado_Li_Battery_4hr	2045	3,591	3,602	(11)
Riverside_Li_Battery_4hr	2045	445	520	(75)
Southern_PGAE_Li_Battery_4hr	2045	2,233	2,395	(162)
Northern_California_Flow_Battery	2045	54	308	(254)
Southern_NV_Eldorado_Li_Battery_8hr	2045	3,212	3,504	(293)
Greater_Kramer_Li_Battery_8hr	2045	231	563	(331)
Riverside_Li_Battery_8hr	2045	-	485	(485)
Greater_Imperial_Li_Battery_4hr	2045	-	571	(571)
Arizona_Li_Battery_4hr	2045	-	870	(870)
Greater_LA_Li_Battery_4hr	2045	1,193	2,078	(885)
Northern_California_Li_Battery_8hr	2045	883	2,123	(1,240)
Northern_California_Li_Battery_4hr	2045	2,198	3,751	(1,553)
Southern_PGAE_Li_Battery_8hr	2045	2,184	3,871	(1,687)

Recommended – LLT (2030 LSE Plans) RESOLVE-Selected Transmission Upgrades

California Public Utilities Commission